Integration of Heterogeneous Semistructured Data Models in the Canonical One

L. A. Kalinichenko
Institute for Problems of Informatics
Russian Academy of Sciences
Vavilov str. 30/6, Moscow, V-334, 117900
E-mail: leonidk@synth.ipi.ac.ru

Abstract

To provide for interoperability of heterogeneous information
objects it is required to establish a global, uniform view of
the underlying digital collections and services. An informa-
tion model is needed which is able to express uniformly the
structure and semantics of heterogeneous data collections as
well as the available services. Usually the mediator’s layer
is introduced to provide the users with the metainformation
uniformly characterizing content of the underlying collec-
tions and with the canonical information model applied for
definition of such metainformation and for querying inte-
grated world of digital collections.

The paper focuses on the canonical model intended for
homogeneous representation of various semistructured and
hybrid data models that have been developed recently with
orientation on the data contained in Web sites. The paper
provides a short overview of several representative semistruc-
tured and hybrid data models. The canonical information
model (based on the SYNTHESIS language) intended for
uniform representation of heterogeneous information in me-
diators is introduced. The paper shows how different cat-
egories of semistructured models can be equivalently and
homegeneously represented in the canonical model.

1 Introduction

Digital Libraries as advanced forms of information systems
are based on theory and practice of acquisition, modeling,
management and dissemination of digital information via
networking media. The explosion of the World Wide Web
and of the multimedia technology provide initial techniques
for organization of digital information collections and indi-
cate a technical framework for the libraries of the future.
Digital Libraries — complex and advanced forms of informa-
tion systems — are considered as distributed repositories of
knowledge. Numerous forms of digital collections represen-
tations could be included in such repositories. Therefore,
the fundamental for Digital Libraries problem should be re-
solved: how to map huge variety of digital collections into
their uniform representation and how to support the basic

First Russian National Conference on

DIGITAL LIBRARIES:

ADVANCED METHODS AND TECHNOLOGIES,
DIGITAL COLLECTIONS

October 19 - 21, 1999, Saint-Petersburg, Russia

library function of providing access to the integrated collec-
tion of heterogeneous information 7

The spectrum of possible forms of data representations
ranges from structured and/or object databases through
knowledge bases and semistructured data to completely un-
structured data (containing texts or images). Database sys-
tems are able to provide comprehensive data management
functions relying on a schema to which the data should con-
form. The database systems exploit the semantic content
defined by the schema to perform such functions as index
creation, query optimization, constraint management, inter-
pretation of database objects behaviour. Knowledge bases
are more flexible forms of information representation where
significant portion of data is not directly stored but can be
deduced applying rules. The schema and entity behaviour
is less deterministic and more rule-based than in databases.

A large volume of information must be incorporated into
a digital library without a formal schema or with a partially
determined schema. There is a need to map raw information
sources into forms that exhibit as much structure as possible.
Here we can distinguish between sources exhibiting certain
regularity and completely unstructured data. HTML pages
constitute vast example of the data exhibiting certain reg-
ularity in cases when we can extract a structured represen-
tation of the data from pages containing them. Usually this
task is performed by specific wrappers making possible to
view the respective Web sites as autonomous heterogeneous
databases. Completely unstructured, textual data are char-
acterized by vocabularies communicating to users collections
of terms and their relationships that could be found in tex-
tual documents.

Finally, many software services in the Internet represent
behavioral information that also should be involved into the
process of information discovery, retrieval and computation.
Digital collections of specifications of services (components)
represent them for identification, selection and interoperable
composition of suitable behaviours.

The scale of diversity of forms of information available
makes clear how hard is the problem of imposing represen-
tation uniformity and supporting integrated access to nu-
merous heterogeneous digital collections.

Taking into account importance of collections existing
in forms of the Web sites for the digital libraries, this paper
focuses on the issues of integration of various structured and
semistructured data models in the canonical model paradigm.
The SYNTHESIS model [11] is analysed for such canonical
role — fundamental for the middleware intended for the het-
erogeneous digital collection mediation technology.

The paper is structured as follows '. The paper starts

with a brief survey of semistructured and hybrid data mod-
els. Then the canonical information model intended for uni-
form representation of heterogeneous semistructured models
is introduced. Finally the paper shows how such models can
be mapped into the canonical model to form their homoge-
neous representation.

2 Semistructured data modeling

2.1 An overview

The popularity of the Web has led to a significant body of
techniques addressing the problems of accessing and query-
ing information in the Web. Most often the data in the
Web falls somewhere in between structured and unstruc-
tured data. Term ’semistructured data’ denotes such rep-
resentations possessing some of the following characteristics

[7):

1. the schema is not given in advance and may be implicit
in the data,

2. the schema is relatively large (w.r.t. the size of the
data) and may be changing frequently,

3. the schema is descriptive rather than prescriptive, i.e.,
it describes the current state of the data, but violations
of the schema are still tolerated,

4. the data is not strongly typed, i.e., for different ob-
jects, the values of the same attribute may be of dif-
ferent types.

Several approaches are known to model the Web itself,
structure of Web sites, internal structure of Web pages, and
finally, contents of Web sites in finer granularities. The
languages developed so far can be classified into the Web
queries models (e.g., WebSQL [16], ADM [4]), Web site de-
velopment languages (e.g., WebOQL [3]), Web data integra-
tion languages (Tsimmis, YAT [6], Ozone [15]). These lan-
guages are based on structured (ADM, OQL-doc [1] XML
DTD [8]), semistructured (OEM) or hybrid data models
(Ozone, YAT) considered further.

The Object Exchange Model (OEM) The Object Ex-
change Model (OEM) is a self-describing semistructured data
model. [2] treats data as a graph with objects as the ver-
tices and labels on the edges. All entities in OEM can be
interpreted as objects with object identifiers (OIDs). Some
objects are atomic literals and contain values from one of ba-
sic atomic types. Other objects are complex: their value is a
set of object references denoted as a set of (label, OID) pairs.
Data is not strongly structured. E.g., an object may have
0—n occurences of an attribute value, a type of an attribute
may vary in different object instances up to the situation
when in one instance this is a simple type and a complex
type in another, instances may have structural differences.
An OEM schema consists of a finite set of names R. To form
instance of R a name function from R to set of atomic and
complex object vertices is formed. An OEM database may
be viewed as a labeled directed graph, with complex OEM
objects as internal nodes and atomic OEM objects as leaf
nodes. Named OEM objects form entry points into an OEM
database.

1This work has been supported by the INTAS-OPEN grant 97-1109
and the Russian Foundation for Basic Research grant 98-07-91061

Araneus Data Model [4]. Another approach consists
in extracting the structure from the HTML documents to
present it as a view difinition above Web sites. One of the
model, the Araneus Data Model (ADM), is a page oriented
model intended to describe the structure of a set of homoge-
neous pages in a site. ADM can be considered as a subset of
ODMG [17]. Unstructured HTML documents are analyzed
to extract their structure. Each Web page is considered
as an object with an identifier (the URL) and a set of at-
tributes. Attributes of a page schema may have simple or
complex types. Multivalued attributes are modelled by lists
of tuples. ADM provides also a heterogeneous union type
as an extension of the ODMG model.

Ozone Data Model Ozone [15] is a hybrid model that is
intended to handle semistructured data alongside with con-
ventional structured data. The unified representation and
querying of such hybrid data is the objective. Ozone takes
ODMG model (its ODMG’93 version) and its query lan-
guage OQL as the core. Extension to the ODMG model uses
OEM to represent semistructured portions of data. Main fo-
cus of such extension consists in allowing semistructured en-
tities as values of the ODMG object attributes and ODMG
typed values as OEM vertices treated as dynamically typed
values. Main query language extensions consist in allowing
combined path expressions traversing compositions of struc-
tured and unstructured data and relaxing typing constraints
for semistructured data.

YAT Data Model YAT [6] is an integration system rely-
ing on a semistructured middleware model with typing abil-
ities. Actually, the O2 (ODMG) model is used and extended
with the semistructured capabilities of YAT. This leads to an
ability of defining combined structured/semistructured data
types and constructing respective type instances. Specific
features are added to query such combined data instances.

In the following subsections the more detailed informa-
tion on ADM, YAT and Ozone models will be provided:
these models were selected to show how heterogeneous mod-
els can be homogenized applying the canonical model.

2.2 ADM model characterization

ADM [5] is page-oriented, in the sense that it recognizes the
central role that pages play in the Araneus framework. In
fact, ADM introduces the notion of page-scheme to define
the structure of a set of homogeneous Web pages. ADM also
provides for limited constraints capabilities to catch knowl-
edge of specific structural properties that occur in Web sites.

In ADM, a Web page can be seen as an object with an
identifier, the URL, and several attributes, one for each rel-
evant piece of information in the page. The attributes in a
page can be either simple, like text, images, binary data or
links to other pages, or complex, that is, lists of items, pos-
sibly nested. ADM also provides heterogeneous union and a
form type, specifically needed to model the organization of
Web pages. Pages sharing the same structures are grouped
in page-schemes.

Simple attributes are mono-valued and correspond to
atomic pieces of information, such as text, images or (other
multimedia types), and links to other pages. Complex at-
tributes are multi-valued and represent (ordered) collections
of objects, that is, lists of tuples (repeated patterns in Web
pages are physically ordered). Component types in lists can
be in turn multi-valued, and therefore nested lists are al-
lowed. An important construct in Web pages is represented

by forms. Conversely, forms are used to execute programs on
the server and dynamically generate pages. ADM provides
a form type: in order to abstract the logical features of an
HTML form, it is seen as a virtual list of tuples; each tuple
has as many attributes as the fill-in fields of the form, plus a
link to the resulting page. ADM uses a heterogeneous union
type in order to provide flexibility in modeling, according to
the heterogeneous nature of the Web.

The set of ADM types is recursively defined as follows
(each type is either mono-valued or multi-valued):

e each base type is a mono-valued ADM type;

e LINK TO D is a mono-valued ADM type; D, the des-
tination of the link, is (i) either a page-scheme name,
P , (ii) or a union type, P union P union ...P, ,
where each P; is a page-scheme name;

e LIST OF (A : Th, Ay : T,..., Ay : T}) is a multi-
valued ADM type, if A1, Aa,..., A, are attributes and
Ti,To,...,T, are ADM types;

e FORM(4, : Th,As : Ts,..., A, : T,) is a multi-
valued ADM type, if A1, Aa,..., A, are attributes and
Ti,To,..., T, are ADM types; exactly one attribute
has type LINK TOD: this is used to denote the URL
of the page generated in response to the submission of
the form.

ADM supports the following kinds of constraints. A link
constraint is a predicate associated with a link. It is used
to document the fact that the value of some attribute in the
source page-scheme equals the value of another attribute in
the target page-scheme.

For two page-schemes, P; and P, connected by a link
ToP>, a link constraint between P; and P, is any expression
of the following forms: A = B or A = v, where A is a mono
-valued attribute of P, B is a mono-valued attribute of P,
and v is a constant.

An inclusion constraint is an expression of the form:
Pi.A, C P,.A, where P, P, are page-schemes with attributes
A,, Ay towards page-scheme P.

On a page-scheme a special constraint can be specified:
when a page-scheme is unique, it has just one instance, in the
sense that there are no other pages with the same structure.
Typically, at least the home page of each site falls in this
category. For a unique page-scheme, the URL is supposed
to be known, and it is documented in the ADM scheme.

Finally, to allow for null values, ADM introduces optional
attributes.

A schema of the TitleIndexPage for DB and LP bibliogra-
phy Web server (http://www.informatik.uni-trier.de/"ley/
db/index.html) defined in the Araneus DDL looks as follows:

PAGE-SCHEME TitleIndexPage
WorkList: LIST-OF

(Authors : TEXT;

Title : TEXT;

Reference : TEXT;

Year : TEXT;

Pages : TEXT;

AuthorList: LIST-O0F (Name : TEXT;
ToAuthorPage : LINK-TO

AuthorPage;) ;

ToRefPage : LINK-TO ConferencePage UNION
JournalPage UNION
SeriesPage UNION

WebPage OPTIONAL;
);
END

In the last section it will be shown how this schema can
be expressed in SYNTHESIS.

2.3 YAT model characterization

YAT [6] relies on a semistructured data model, but enhanced
with type construction. In YAT data structures are pre-
sented as labeled trees (patterns). Labels are used to denote
values, attributes or type information thus trying to avoid
distinctions between data and schema. A pattern tree is
an ordered tree whose nodes are labeled with data variables
or constants. The model also supports references (denoted
as &<name>) to other trees/objects in order to represent
sharing of information. Structural capabilities of YAT are
based on the implementation of the ODMG’93 model in O.
Figure 1 shows how Oz schema can be expressed in YAT.

class

artifacts image

set

EArtifact

The "Antist” Schema

Fig. 1: O2 schema in YAT

Collections are represented through the use of the * edge
label. Schema and instance patterns are presented similarly.
Union operation (V) is used to capture various alternative
structures. For instance, a YAT pattern is either a simple
node with any label and an arbitrary number of sons, all of
which are YAT patterns, or a simple node with a reference.

bics
s

Field
Bio

String Swring String
sombol V@ symbol
He
Brographie s struciure | Swing Field

Fig. 2: XML-like structuring in YAT

How to mix structured and less-structured information
in YAT is shown on Figure 2 relating to a collection of XML

documents (biographies). Each document (Bio) is described
as a sequence of well defined fields (person, born and died)
followed by an arbitrary number of other fields (Field). For
these attributes it is only known that they have a name
(Symbol) and that they are composed of a single string or of
more nested fields. In this specific example, arbitrary infor-
mation contained in biography documents (like influences,
favorite places or exhibitions of artists) may be stored in
these additional fields.

The following example [6] creating a view containing in-
formation about modern artists shows YAT data collection
querying capabilities. The view is constructed above O2
database (artisits) and an XML-Wais database (biographies).
The query resembles datalog rule. The use of explicit Skolem
functions allows to control the creation of new pattern iden-
tifiers (Martist(N)). The biographies semistructured infor-
mation (i.e., Field) is exported to the view.

modern_artists:
root *-> Martist(N):
artist(-> name -> N,
-> born -> B,
-> died -> D,
-> school -> S,
-> biography *-> Field) <=

artists:
set *-> &Artist:
class -> artist -> tuple
(-> name -> N,
-> school -> S,
-> artifacts -> set *-> &Artifact:
class -> artifact -> tuple (-> name -> Na,
-> year -> Da)),

biographies:
bios *-> Bio:
biography(-> person ->,
-> born -> B,
-> died -> D,
*-> Field),

Da > 1800,
N=P

Interpretation of YAT in SYNTHESIS will be shown in
the last section.

2.4 Ozone model characterization

Ozone includes ODMG model with a new built-in type OEM.
Thus ODMG types can be constructed that include semi-
structured data. Objects of the type OEM are of two cat-
egories: OEMcomplex and OEMatomic representing com-
plex and atomic OEM objects respectively. An OEMcom-
plex object encapsulates a collection of (label, value) pairs
where label is a string and value is an OEM object. The
original OEM data model specification included only un-
ordered collections of subobjects, but XML is inherently or-
dered. Therefore complex OEM objects are allowed with
either unordered or ordered subobjects referred to as OEM-
complexset and OEMcomplexlist respectively.

The value of an OEMatomic object may have any valid
ODMG type (including OEM). When the content of an
OEMatomic object is of type T it is said to be of type
OEM(T). Since OEM objects are actually untyped, OEM(T)
denotes a ”dynamic type” that does not impose any typing

constraints. They are thought as untyped containers for the
typed values.

Benefits of both models (ODMG and OEM) are avail-
able. Treating ODMG data as OEM allows queries to be
written without complete knowledge of the schema, while
still retaining access to all ODMG properties (such as meth-
ods, indexes, etc.). On the other hand, ODMG applications
can access semistructured data using standard API’s and
structural optimization.

The query language for Ozone is OQL®. The semantics
of OQL?® on structured data is identical to OQL on standard
ODMG data. The semistructured capabilities of OQL?® are
mostly derived from Lorel.

When a path expressions in OQL® query is being evalu-
ated, a corresponding database path may involve all struc-
tured data, all semistructured data, or there may be cross-
over points that navigate from structured to semistructured
data or vice-versa.

Broker
Catalog
vendors xx\“giii:jts
produces (1 to many)
Company Froduct
wadeby (manyto 1)

Fig. 3: ODMG retail-broker database

The example ([15]) considers a database supporting a
broker that sells products on behalf of different companies.
There as three ODMG classes in this database: Catalog,
Company and Product. Class Catalog has one object which
represents the on-line catalog maintained by the broker.
The object has two attributes: a vendors attribute of type
set(Company), denoting the companies whose products are
sold in the catalog, and a products attribute of type set(Pro-
duct), denoting the products sold in the catalog. The Com-
pany class defines a one-to-many produces relationship with
the class Product of type list(Product). This relationship
specifies the list of products manufactured by the company,
ordered by product number. Likewise, the Product class de-
fines the inverse many-to-one madeby relationship with the
class Company, denoting the product’s manufacturer.

The Company class contains other attributes such as name
and address, and an inventory() method that takes a prod-
uct name argument and returns the number of stocked units
of the product of that name. The Product class contains
other attributes such as name and prodnum (product num-
ber). The named object Broker of type Catalog provides an
entry point to this database. Figure 3 depicts this schema
without atomic attributes. In addition to this structured
data, product-specific XML information is available for some
products, e.g., drawn from Web sites of companies and an-
alyst firms. This data might include manufacturer specifi-
cations (power ratings, weight, etc.), compatibility informa-
tion if it applies (for instance, the strobes compatible with

a particular camera), a listing of competing companies and
products, etc.

To integrate this XML data within the ODMG database,
the Product class is enhanced with a prodinfo attribute for
this product-specific data. Since this data is likely to vary
widely in format, it is not possible to use a fixed ODMG type
for its representation, and it is required to use the semistruc-
tured OEM data model. Therefore, the prodinfo attribute is
a crossover point from ODMG to OEM data. There is also
a need for referencing structured data from semistructured
data. If a competing product (or company) or a compatible
product appears in the broker’s catalog, then it should be
represented by a direct reference to the ODMG object mod-
elling that product or company. If the competing product
or company is not part of the catalog, only then is a com-
plex OEM object created to encode the XML data for that
product or company.

An example of OEM database graph for the prodinfo at-
tribute of a product is shown on Figure 4. Note that in
Figure 4, the competing product named “System12” is not
part of the catalog database and therefore is represented
by a (complex) OEM object; the other competing product
and company are part of the catalog and are represented
by references to Product and Company objects. Further, it
is supposed that some review data are available in XML
for products and companies. The information is available
from Web pages of different review agencies and varies in
structure. The example database is enhanced with a second
entry point: the named object Reviews integrates all the
XML review data from different agencies. Once again, the
diverse and dynamic nature of this data means that it is bet-
ter represented by the OEM data model than by any fixed
ODMG type. Thus, Reviews is a complex OEM object inte-
grating available reviews of companies and products. Here
structured data can be referenced from semistructured data,
since reviewed companies and products that are part of the
catalog should be denoted by references to the ODMG ob-
jects representing them.

Figure 5 is a simplified example of the semistructured
Reviews data. It is assumed that the reviews by a given
agency reside under distinct subobjects of Reviews, and the
names of the review agencies (Consumersinc, ABC Consult-
ing, etc.) form the labels for these subobjects. Reviews
by Consumersinc agency have a subject subobject denoting
the subject of the review (either a product or a company),
which may be a reference to the ODMG object representing
the company or product, or may be a complex OEM object.
Both cases are depicted in Figure 5.

The overall example scenario consists of hybrid data.
Some of the data is structured, such as the Product class
without the prodinfo attribute, while some of the data is
semistructured, such as the data reachable via a prodinfo
attribute or via the Reviews entry point.

In the last section it is shown how this example can be
represented and queried in the canonical model.

3 ICanlonical information model for the mediator’s
evel

The model used for uniform representation of various data
and information models in one paradigm is called the ” canon-
ical” model. The model intends to provide for uniform
(canonical) representation of heterogeneous digital collec-
tions (repositories of data, knowledge and programs) for
their use as interoperable collections. The same model is

intended also for description of ontological models of appli-
cation domains.

The mediator’s canonical model is based on the SYN-
THESIS language [11] that has been developed for compo-
nent-based information systems development in the wide
range of pre-existing heterogeneous components. A set of
the canonical model facilities used for the uniform represen-
tation of the information resources includes the following:

e Frame representation facilities. Frames are treated
as a special kind of abstract values introduced mostly
for description of concepts, terminological and semistruc-
tured information. In particular, the information re-
source metainformation (schema) is represented using
the frame language. Frame representation facilities
provides for expressing of arbitrary semantic associ-
ations of frames, for representation of unstructured,
textual and temporal associations. All specifications
in canonical model have a form of frames that become
a part of the metabase. Collections of frames form
worlds and contexts.

e Unifying type system. A universal constructor of
arbitrary abstract data types as well as a comprehen-
sive collection of the built-in types are included into
a type system. Heterogeneous union type is a repre-
sentative of the type system. For types a type spe-
cialization (subtyping) relationship is defined. Types
are values themselves. Metatypes provide for classi-
fication of the type hierarchy. Type expressions are
introduced providing for type compositions that are
required to type the results of queries.

e Class representation. Classes provide for represent-
ing of sets of homogeneous entities of an application
domain. Class hierarchies and type inheritance mecha-
nisms make possible to define the generalization / spe-
cialization relationships. Class instances (objects) are
defined on abstract data types. Metaclasses provide
for introducing different classification relationships or-
thogonal to the class generalization relationship.

e Multiactivity representation. These are used for
the specification and implementation of intecrcon-
nected and interdependent application activities, for
the specificaton of declarative assertions and concur-
rent megaprograms over the information resources.
These facilities provide for specification of concurrent
and asynchronous behavior of application systems and
of interoperable resource environments as of dynamic
discrete events systems.

e Facilities for the logical formulae expressions.
A multisorted object calculus (typed first-order lan-
guage) is used for querying the integrated set of digi-
tal collections as well as for specification of constraints
and behaviour.

Information characterizing the entities and situations ob-
served in a real world is represented in the information re-
source base as a collection of abstract values that can be
immutable or mutable uniquely identified values (objects).
In this range we can differentiate between:

- collections of self-defined objects or collections of frames
(worlds);

- worlds with pre-defined frame associations;

- classes containing partially typed objects containing
their own individual attributes that were not specified in a
type of the class instance;

ol: Product

attribute (OEW) prodinfo

100 "16oz" .
competing

competing

com patible

competing

od: Product

o2: Product

03 Company

madeby

"System 12" "Eylem Ine."

Fig. 4: OEM graph for prodinfo attribute

Consumerslne

subject category

rating

"handtools”

ol: Product

torgue efficiency

name

4.3 6.5

"Lmplifier"

Reviews

LBC_Consulting
Consumerslne

LBC_Consulting
subject

category

distortion "electronics"”

200 39 6.5

Fig. 5: Semistructured Reviews data

- strictly typed classes (a set of instance attributes is
strictly fixed);

- classes of aggregates (associations of objects and frames).

3.1 Frame language

A frame is considered to be a symbolic model of a certain
entity or a concept. A frame is represented as a set of at-
tributes called slots being used for a description of properties
of an entity or a concept. An order of slots given for a frame
specification is significant. To each slot a collection of val-
ues can be associated; each value being generally an abstract
value of arbitrary type defined in the SYNTHESIS language
(of course, it may be another frame).

Any frame can acquire a unigue identifier to which the
built-in slot self corresponds. The value of this slot cannot
be modified.

In the frame language a knowledge base is considered as
a collection of frames interrelated by means of binary asso-
ciations. There is no means to represent classes of concepts
or entities in the frame language: only individual instances
can be represented. The facilities for specification of types
and classes have higher level and extend the frame language

upwards.

The frame language is an object-centered language that
does not rely on a class-based object-oriented paradigm.
Frames can appear as objects that exist autonomously, with-
out types and classes to describe and create them. They are
collections of slots representing both state attributes and
operations. A basic mechanism for sharing of information
is delegation instead of inheritance in class-based models.
Delegation is a mechanism by which an object that cannot
answer a message can delegate it to another object. Dele-
gation serves for sharing of the characteristics of an object
without sharing of a common class description (as with class
inheritance).

In the SYNTHESIS language frames are used also for
the metadefinition of other facilities of the language.

Frame is an important concept of the language: any lan-
guage entity (including objects) is uniformly represented by
means of frames. It means that each such entity possesses
properties of frames given by the type (Tframe).

And finally, the frame language is used also for the ex-
ternal representation of constants of various SYNTHESIS
types (including abstract data type values). In particular,
self-defined objects (objects that exist separately and not

belong to any class) are also represented by frames. Frames
can be combined into collections (worlds or contexts). The
collections can include frames having arbitrary structure.

Generally, frames are abstract values, their type (Tframe)
is a subtype of the abstract value type Taval. Slots of the
frames are considered as functions appeared as a : C — V
where ¢ is a slot name, Cis a context or a world containing
a corresponding collection of frames, V'is a collection of the
slot values. Domains of such functions are collections of ab-
stract values (here the collections of frames) in a context or
in a world. At the same time defining a slot as a component
of a frame specification a notation a : v is used where v is a
value belonging to V or to a subset of V.2

An additional metainformation can be associated with
frames, slots and values. It also takes a form of frame. This
metainformation provides for additional capabilities in spec-
ifyng of the complex concepts. The frame model provides
for user-defined relationships (binary associations) keeping
forward and inverse relationships.

Frame is always represented in figure brackets { and }.
Identifiers of nested frames can be omitted. Slots and their
values are separated by a colon. The values of a slot are
separated by a comma. Semicolon terminates the listing of
values of a slot. It is important that any frame component
(identifier, slots, values) can be omitted. In case when a
value of a slot is absent, semicolon is provided immediatelly
after a colon. Values in frames containing no slots belong to
implicit universal built-in slot.

Variables in frames are used for indication that content of
their certain component can be arbitrarily chosen. Variables
can get values of arbitrary types.

Separate frames in the frame base can be linked with
each other by means of binary associations. For example,
if a concept is a subconcept of another concept then the
frames representing those concepts should be keeped in a
association that reflects the corresponding relationship.

To set an association between the frame A and the frame
B a slot is included into the frame A with a name of an
association required. An identifier of the frame B should
become a value of this slot.

3.1.1 Worlds and contexts

Frames that are contained in the frame base are subdivided
into the subcollections (worlds). Every world can be seen
as separate and relatively independent section of the frame
base that is used for the formation of the frame collections
and for their manipulation. A world is represented by a
frame having the predetermined structure:

{< world identifier >;
in : world;
< collection of frames >

}

Generally a world is a unit (a module) for representation,
compilation, storage and manipulation of the frame collec-
tions. If variables are used in a world, corresponding type
definitions should be included into the same context where
the world is contained. Such context is used for compila-
tion and interpretation of the world. Each frame and all
its nested frames should belong to one and the same world.
Collections of worlds can form contexts. A context is also
represented by a frame having the predetermined structure:

2Fach frame, its components (slots and slot values) as well as its
associations with other frames are considered as existing in time.

{< context identifier >;
in : context;
member :< list of world or context identifiers >

}

The association member (member_of is its inverse asso-
ciation) is used for establishing of membership of frames (or
contexts) in contexts. Contexts in their turn can partici-
pate in various associations to form hierarchical or network
structures. Context (world) names can be used as parame-
ters of functions and predicates providing for localization of
the corresponding functions in the context (or in the world)
given. For data search, a context (or a world) explicitely in-
dicates a space for the search by means of a certain formula.

3.2 Type system of the SYNTHESIS language
3.2.1 Principles of the type system construction

Abstract data types (ADT) constitute the basis for the type
system of the language providing for construction of arbi-
trary data types. ADT definitions include a description of
behaviour of the type values by means of specifications of
their operations. We emphasize specification of ADT here
separated from implementations. Parametric specifications
of ADT are possible. ADT can define object or non-object
types constituting collections of admissible values of the re-
spective kind.

A set of built-in data types is included into the lan-
guage alongside with ADT. The built-in types are defined
by their interfaces. Built-in and arbitrary types (given by
ADT) are subdivided into concrete and generic (paramet-
ric) types. Generic types are treated as functions of free
variables contained in type specifications that deliver types
as their resulting values. An application of such type func-
tions provides for concretization of generic types. Usage of
generic types as parameters for the function specifications is
allowed for static and for dynamic type concretization.

The multilevel type system of the language is organized
as follows. A set of all values expressible in the language (in-
cluding frames and objects that are not type objects them-
selves) is located on the zero level (the level of values). At
this level various computations on the values can be defined.

On the first level (the level of types) type objects are
located (as well as type functions and expressions) that pro-
vide for the definition of the concrete and generic types and
for the concretization of the latter ones. On the second
level (the level of "types of types”) the metatype objects
are located that include the types of the first level as their
instances. On the third level the metatypes objects are lo-
cated that include the metatypes of the second level as their
instances, and so on. Actually, metatypes are metaclasses
having types or metatypes as their instances.

Thus the multilevel type system that imposes a classifi-
cation relationship on the data types is defined.

Alongside with the type classification relationship, spe-
cific facilities are introduced for establishing of the subtype
relationship. In the subtyping hierarchy any value of a type
can be used everywhere where a value of the supertype is
expected. Multiple subtyping is allowed. The classifica-
tion relationship that is being set on types is orthogonal
to the subtype relationship. It is essential that only types
(metatypes) belonging to one and the same classification
level can participate in the subtype relationship.

In the structure of the type system of the SYNTHESIS
language the Taval type is used as the root of the lattice,
the Tnone type - as its bottom. The Tnone type represents

abstract values with an ”empty” semantics. For instance,
a value none belongs to Tnone and can be returned as a
result of functions creating an empty result of any type. All
object types are subtypes of the Tsynth_object type in which
an attribute self is defined. self is used as an object self-
reference. 3

A class combines properties of a type and of a set. A class
supports a set of objects of a given type that constitutes an
extent of the class.

Collection constitutes a virtual built-in type (instances of
this type never exist). Sets, bags and sequences are defined
as subtypes of the collection type. Sets resemble classes in a
sense that they represent sets of ADT values or sets of ob-
jects. One and the same object can belong at the same time
to several sets and to change dynamically its participation in
them. A set is distinguished from a class in the following: 1)
an object cannot be created by sets; 2) for a set there is no
difference between the own and total extent as for a class; 3)
classes as sets of objects are automatically supported; sets
should be created by the program and supported by users.

At the same time a class is considered to be a subtype of
a set type. Due to that these generally different constructs
can be used quite uniformly: a class can be used everywhere
where a set can be used. For instance, the object calculus
formulae evaluation is based on collections of ADT values
(or of objects). Classes can be used for such collections as
specializations of the set type. Due to that a calculus and
algebra on which the object calculus is based are closed with
respect to the composition of the algebraic operations.

With each class an ADT specification is associated. This
ADT defines properties of objects being class instances.

A subset of the set of built-in types of the language looks
as follows:

< built — in type >:=< function type > |
< integer type > | < real type > |
< Boolean type > | < character type > |
< bit string type > |
< character string type > | < set type > |
< sequence type > | < bag type > | < array type > |
< enumeration type > | < range type > |
< union type > | < product type > | < frame type >

Notice that frame type is a built-in type as well as the
union type.

All operations over typed data in the language are rep-
resented by functions. A function type defines a set of func-
tions, each function of the set being a mapping of the func-
tion’s domain (a cartesian product of the sets of the input
parameters values) into a range of the function (a carte-
sian product of the sets of the output parameters values).
Functions can be passed as parameters, can be returned as
values, can be used as the abstract value attributes.

3.2.2 Type expressions

A type in the SYNTHESIS language is defined by its specifi-
cation. A type also is a value represented by an object corre-
sponding to the specification. A type can be determined by
typed variables, can be inferred by the object calculus for-
mulae and can be produced as the result of type expressions
evaluation.

Main operations that are used for construction of type
expressions (explicit or implicit) are operations of a type
specification calculus [14]: type reduct, meet and join.

3Type specification calculus supporting the SYNTHESIS type sys-
tem is defined in [14].

10

3.3 Partially typed objects

Objects can be completely typed (in this case all their at-
tributes are defined by a class instance type specification),
partially typed (part of their attributes are defined by a class
instance type specification and other attributes can be ar-
bitrarily defined for different instances of the class by the
objects themselves) or can be completely autonomous (not
associated to any class). Autonomous objects exist isolated
or can be related to some worlds and are self-defined (types
can be used for their definitions if required).

Kinds of associations that can be used by frames in a
world can be restricted. To do that it is required to de-
clare in a class specification the types of binary associations
(of the frame language) by which frames can be interrelated.
Such class corresponds to a world in a frame base. By means
of such associations arbitrary relationships of objects and
frames can be established to define flexibly additional infor-
mation about objects.

Class specifications combined with frame language facil-
ities give flexible abilities for the representation of informa-
tion about information resources. In particular, the frame
language is used for the representation of unstructured or
semistructured information about application domain en-
tities (including textual data). Such information can be
keeped separately or can be related directly to objects on
the basis of object - frame associations.

3.4 Object calculus formulae
3.4.1 General rules

Object calculus formulae (or simply formulae) in the SYN-
THESIS language are used to define rules in object calcu-
lus programs, to formulate assertions (e.g., consistency con-
straints of an information resource base), to express queries
to an information resource base, to form predicative speci-
fications.

To specify formulae a variant of a typed (multisorted)
first order predicate logic language is used. Every predicate,
function, constant and variable in formulae is typed.

Predicates in formulae correspond to classes, worlds, col-
lections and functions that are specified in information re-
source specification modules and have corresponding types.

For terms the variables, constants and function designa-
tors (in a particular case - expressions) are used. Each term
has a well defined type. An expression denotes a function
with arguments respresented by variables in the expression
having types defined by an expression context. A result of
a function and its type are implicitely defined by an expres-
sion.

An atom (atomic formula) appears as p(ti,...,tn), where
p is a predicate and #; are terms. Atomic formulae define
simple statements concerning information resources.

In simple form a formula is an atom or appears as:

w1 & w2 (w1 and w2)

wy |we (wp or wy)

“we (not ws)

wy -> wz (if w1 then w3)

ex ¢/t (w) (for some z of type t, w)
all z/t (w) (for all z of type t, w)

where w, w1 , wy are formulae.

Variables in formulae can be bounded by quantifiers. A
scope of a quantifier in a formula with quantifier is a formula
w. Occurences of variables denoted by a quantifier in the

scope of the quantifier are bounded and are free for their
occurences out of the scope. A notation x/t defines that a
type of a variable x is ¢.

Rules are represented as closed formulae of the form:
a : — w where ¢ is an atom and w is a formula. a is
a head and w is a body of a rule. All free variables of a
and all free variables of w are assumed to be bounded by
a universal quantifier placed before the rule. If w is absent
and attributes of @ have constant values then such rule is a
fact.

If a formula has z1, ..., &, as free variables then the for-
mula results in a collection of substitutions of correctly typed
values of z1, ..., £ such that on each of them the formula in-
terpreted on collections of value instances involved gets the
true value. Formulae semantics are such that based on such
substitutions a resulting collection is formed containing ob-
jects, ADT values or frames as its elements. In the sequel in
cases when an exact nature of values and collections is not
important, general terms ”value” and ”collections” are used
(assuming that sets, bags, sequences, worlds and classes are
specializations of collections and that objects and frames are
special cases of ADT values).

The variables in formulae can be typed:

< typed variable >::=< variable > [/ < type expression >|

A syntax of typed variables provides for necessary modi-
fications of denotations for establishing a correspondence of
variables to class (type) attributes and for a proper deno-
tation of resulting variables of subformulae to form a final
result of a formula.

In formulae numbers and strings provide for representa-
tion of integer and real values, of range and enumeration
type values, of bit and character strings. Constants of more
complex types are represented by frames.

3.4.2

Collections of values of abstract data types constitute in-
terpretation domains of formulae. A collection of values
(e.g., collection of objects, collection of frames) corresponds
to a predicate-collection (including a predicate-class and a
predicate-context). Thus a predicate-class or a predicate-
context are always unary. A collection type and a collection
element type should be distinguished. Such unary predicate
corresponds to a collection, an argument of the predicate
takes as its values elements of the collection (ADT values)
having a respective type of the collection elements or its
reduct. Unary predicate with a type name assumes a set of
admissible instances of this type.

Thus to an atom that appears as < predicate name >,
or < predicate name > (< term >), where a predicate name
defines a collection, a collection of ADT values corresponds
that were created or derived (in case of views) up to the mo-
ment of the predicate evaluation. In case of a type predicate
this is a set of admissible instances of the type: therefore, a
type predicate is treated as a collection predicate in formu-
lae. In case of a predicate-class all created (derived) objects
in all direct and transitive subclasses of a given class are
included. Such set is known as a total extent of a class.
If it is required to use only own class extent that does not
contain instances of its subclasses, it is necessary to mark
predicate-classes in formulae by * placed before a name of
a class. A singleton set corresponds to a predicate-resource
represented by a single object.

For < term > a typed variable can be used to denote a
collection element type. The variable can be typed by the

Interpretation of formulae

11

collection element type itself, by its reduct, or by a reduct-
like type whose intention is to introduce another type at-
tribute names for their proper denotation in formula.

Arbitrary compositions of functions can be used in for-
mulae (in this case a function designator is used as an actual
parameter). Compositions of functions having a function
designator for the first parameter play a specific role. Such
compositions provide for construction of path ezpressions
denoting a path in a compositional class (ADT) hierarchy.

For instance, let specifications of classes family and per-
son appear as:

{Person;
in:type;
name: string;
age: integer

}

{person;

in: class;

instance_section:
{objtype: Person}

{family;
in: class;
instance_section:
{name: string;
mother: Person;
father: Person;
children: {set_of: Person}}

Let a variable f denotes an object of the class family.
Then composition of functions name(mother(f)) defines a
mother name in a family f. Alongside with a bracketed
notation more simple dot notation is allowed: f.mother.name
having the same interpretation.

To form a general result of several subformulae related
by &, |, &" connectors ("and”, "or”,”not” respectively) the
following rules should be used.

A connector & denotes an intersection of collections cor-
responding to subformulae. A result contains a collection
of ADT values that are contained in each of the initial col-
lections. A type of elements of the resulting collection is a
result of a join [14] of types of elements of the initial collec-
tions. A resulting join type is assumed to be defined.

A connector | denotes a union of collections. A result
contains a collection of ADT values that are contained at
least in one of resulting collections corresponding to initial
subformulae. A type of elements of the resulting collection
is a result of a meet [14] of types of the elements of the initial
collection. A resulting meet type is assumed to be defined.

The type operations meet and join get an immediate
common supertype (subtype) for the operand types.

A connector & ~ denotes a difference of collections cor-
responding to initial subformulae. A type of elements of a
resulting collection coincides with a type of elements of the
first collection. The resulting collection includes elements of
the first collection that do not contain equal counterparts in
the second one.

Formula with the existential quantifier produces a col-
lection relevant to the quantified formula with type of its el-
ement substituted by a reduct [14] of the relevant collection
type defined on attributes corresponding to the variables
unbounded by the quantifier.

Interpretation of other formulae of the language is similar
though a bit more complicated.

3.4.3 Frame predicates

Depending on the context of the formulae, frame predicate
can be satisfied by a collection of frames or values of a prod-
uct type having for its component types the types of the
resulting variable list of the formula. If the resulting col-
lection corresponding to the frame predicate is formed on
the basis of the resulting variables then every value of the
product type includes as its components (corresponding to
the resulting variables) the values of frame components of
relevant frames having the required types.

Subformulae in a formulae can be linked by symbols &,
|, & ~, set theoretic interpretation of which depends on the
resuts of the subformulae. Here we mention two frame pred-
icates - functional and pattern.

Functional predicate gives an ability to construct path
expressions traversing frame structure or combinations of
object - frame (frame - object) structures. We have already
mentioned that slots of frames are considered as functions
a: C — V, (where q is a slot name, C is a context or a
world name, V is a collection of the slot values). A domain
of such functions is a collection of frames in a context (or in
a world). In case of slots interpreted as stored functions on
using of the function designator a(o) an application of the
generic functions get or set is implicitely assumed. These
functions are extracting or modifying a value of the slot
a of a frame or generally of an abstract value o. Thus,
functional predicate is a logical representation of the result
of an application of a function given by a slot. The resulting
variable and its type are determined by the name and the
type of the term corresponding to the resulting argument of
the function. Compositions of functional predicates using
dot notation give an ability to construct path expressions.

In formulae the typed variables can be used everywhere
to define a type of a result of a formula combining classes
and worlds as well as to set the identity of variables and
slots. Admissible transformations of values are assumed in
accordance with the types given. Variables are used in for-
mulae to express the formula logic and to denote slots of the
resulting frames.

A pattern predicate provides a set of frame patterns for
a specification of relevant frames. Comprehensive variants
of patterns can be specified.

4 Uniform representation of semistructured and hy-
brid data models in the canonical one

Object-oriented facilities of the canonical model has been
checked to represent equivalently ODL of ODMG [13] though
the SYNTHESIS model goes far beyond that. This reference
shows how to represent structural aspects of semistructured
data models in the canonical one.

4.1 Mapping of the ADM model into SYNTHESIS

Mapping of the ADM model into the SYNTHESIS model
will be analyzed first. Similarly to ADM, a Web page can
be seen in SYNTHESIS as an object if it can be structured.
This object may have attributes (monovalued having, e.g.,
text, image or other abstract data types, or multivalued).
ADM list types are mapped into the SYNTHESIS sequence
types that can also be nested. The FORM type can be easily
defined as ADT and heterogeneous union is the SYNTHESIS
built-in type.

12

Constraints in SYNTHESIS are expressed as closed for-
mulae of the object calculus. Besides that, there are built-in
constraints to express simple assertions like unique, obliga-
tory, optional and others.

LINK will be interpreted as an attribute belonging to
specific attribute metatype LINK-TO providing necessary
properties for an attribute (e.g., URL properties).

Due to the above, the mapping of the ADM model into
SYNTHESIS is straightforward. Type definitions for the
schema of the TitleIndexPage for DB and LP bibliography
Web server will look as follows:

{TitleIndexPage;
in: type;
WorkList: {sequence; type_of_element: Authorl};

{Author;

in: type;

Authors : TEXT;

Title : TEXT;

Reference : TEXT;

Year : TEXT;

Pages : TEXT;

AuthorList: {sequence; type_of_element:
{in: type;
Name : TEXT;
ToAuthorPage : AuthorPage;
metaslot in: LINK-TO end }};

ToRefPage : {union; ConferencePage;

JournalPage; SeriesPage;

WebPagel;
metaslot in: LINK-TO, optional end
};

Mapping of the XML DTD into the SYNTHESIS canon-
ical model is considered in [18].

4.2 Mapping of the YAT model into SYNTHESIS

YAT interpretation in SYNTHESIS is assumed as follows.
Labeled trees (patterns) of YAT can be mapped into frames
(objects).

References may be interpreted by the self slots (attributes)
of frames (objects).

Definition of YAT classes (Figure 1) in SYNTHESIS looks
like the following. First, the instance types should be de-
clared:

{Artifact;

in: type;

name: string;

year: integer;

image: {set-of: char}}

{Artist;

in: type;

name: string;

school: string;

artifacts: {set_of: Artifactl}}

Notice, that self is implicit attribute of any object. We
assume that classes having Artifact and Artist as instance
types are declared respectively as artifact and artist.

Sets of &Artist and &Artifact values (artists and arti-
facts in Figure 1) are defined in SYNTHESIS as

{artists; {set; type_of_element: Artist.selfl}};

{artifacts; {set; type_of_element: Artifact.selfl}};

We assume that these sets are instantiated with refer-
ences to the instances of classes artist and artifact respec-
tively (these sets may represent any subset of artist and
artifact classes).

The biography type (Figure 2) and the respective set of
biographies will be defined similarly:

{Biography ;

in: type;

person: string;

born: string;

died: string;

bioprop: {set; type_of_element: Fieldl}};

{Field; {union; string;
{set; type_of_element: Field}}};

{biographies; {set; type_of_element: Biographyl}};

To create a set of modern artists it is assumed that the
type Martist is declared as:

{Martist;

in:type;

name:string;

born:string;

died:string;

school:string;

bioprop: {set; type_of_element: Fieldl}};

and a set of modern artists is defined as:

{martist; {set; type_of_element: Martistl}};

Now, a transformation shown in the YAT-related subsec-
tion will be defined in SYNTHESIS as:

martist(self (N), N/name, B/born, D/died,
S/school, bioprop) :-

ex UID/Artist.self(artists(UID) &
artist (UID, N/name,S/school,
artifacts(Na/name, Da/year))) &
biographies(P/person, B/born, D/died, bioprop) &
Da > 1800 & N = P

Here self(N) plays the role of a Skolem function - similarly
to YAT.

4.3 Mapping of the Ozone model into SYNTHESIS

Before going into discussion of mapping of hybrid model
language Ozone into SYNTHESIS it is worth of mentioning
that SYNTHESIS itself has been developed as the hybrid
one. Frames for unstructured and semistructured data and
objects for the structured one provide the required facilities.

13

The frame language of SYNTHESIS can be considered
as a self-describing semistructured data model, similar to
OEM. Entities in OEM treated as objects with OIDs are
easily interpreted as frames in SYNTHESIS. Multivalued
attributes having 0 — n occurences of an attribute value in
OEM are easily interpreted: a slot of a frame is inherently
multivalued. A slot value may be of any type admissible in
SYNTHESIS (including the frame type). Therefore, simi-
larly to OEM, a frame database may be viewed as a labeled
directed graph, with frames as internal nodes and slots hav-
ing atomic values as leaf nodes or complex values.

To work with semistructured data on the Web, each Web
site page may be represented in SYNTHESIS by a frame em-
bedding sub-frames representing the fragments of the page.
An instance of a world is a collection of frames that can be
reachable through hypertext-based frame relationships from
the root’ frame referenced by an URL. The frames involved
can be represented differently (as frames with slots or with-
out slots or combining both approaches).

Such world is interpreted as a labeled graph with nodes
containing frames (that look as aggregates (or can be struc-
tured as those), as semistructured objects or as unstructured
data) and arcs formed by hypertext links. In SYNTHESIS
attributes of structured types can be typed with the frame
type and frame slots can be instantiated with any SYNTHE-
SIS type values (dynamic type capability).

After these general comments, it is easy to see how to
map the Ozone data model into SYNTHESIS. Built-in type
OEM is interpreted as the frame type. More precisely, the
frame type corresponds to OEMcomplex. Any type of SYN-
THESIS (meaning any built-in type) can be used to map
OEMatomic type of Ozone. Frames are ordered collections
of pairs and correspond to OEMcomplexlist type. There-
fore, it is required to add in SYNTHESIS another frame
type to deal with unordered frames: frame set. This type
will correspond to OEMcomplexset type.

Benefits of both models - object-oriented and frame-based
- are available in SYNTHESIS. Treating frames as typed
data allows queries to be written without complete knowl-
edge of the schema. At the same time all object-oriented
properties of the model (functions, subtyping, etc.) are
available. Path expressions in SYNTHESIS may correspond
to database path that may involve structured or semistruc-
tured data only, or there may be crossover points to navigate
from structured to semi-structured data or vice-versa.

Mapping Ozone to SYNTHSESIS model is shown using
the example on Figure 3. Specifications of Catalog, Company
and Product types in SYNTHESIS follow.

{Catalog;

in:type;

vendors:{set_of: Company};
products:{set_of: Productl}};

{Company;

in:type;

name:string;

address:string;

produces: {sequence_of: Product};

inventory: {in: function; params: {+x/Product.name,
-stock_unit_numb/integer}}};

{Product;
in:type;
name:string;
madeby : Company;
prodnum:integer;

prodinfo:framel}};

We assume that the SYNTHESIS classes with instances
of Catalog, Company, Product types are catalog, company,
product respectively.

Representation of XML-like semistructured data for prod-
info attribute and for Reviews as frame data follow.

{specs: {wattage:100; weight:"160z"};
competing: 02/Product.self;
competing: 03/Company.self;
competing: {name: "systeml2";

madeby: "Xylem Inc";
compatible: 04/Product.selfl};

{Reviews;
ConsumersInc: {subject: O01/Product.self;
rating: {torque: 4.3;
efficiency: 6.51};
category: "hand tools"};
ConsumersInc: {subject: {name: "Amplifier";
prodnum: 200};
rating: {power: 3.9;
distortion: 6.5};
category: "electronics"};
ABC_Consulting: ;
ABC_Consulting: }

For example, the following query in OQL?®, Ozone query
langusge, selects the names of all competing products and
companies for all products in the broker catalog (Figure 3):

Select N
From Broker.products P, P.prodinfo.competing C,
C.name N

P is statically known to be of type Product, but prodinfo
is an OEM attribute, and C is therefore of type OEM; prod-
info is thus a crossover point from structured to semistruc-
tured data.

Analogous query in the SYNTHESIS languge is expressed
using functional predicates as follows:

X="Broker" &
catalog(X/name) . products.prodinfo.competing(N/name)

The following query has a semistructured to structured
crossover since some of the bindings for C are OEM(Company)
and OEM(Product) objects:

Select A
From Reviews.ConsumersInc R, R.subject C,
C.address A

Analogous query in the SYNTHESIS languge is expressed
as follows (it is assumed here that reviews is a world contain-
ing Review frames):

reviews(X/Reviews) &
reviews(X) .ConsumersInc.subject.C/Company.address

14

5 Conclusion

The paper provides an analysis how the SYNTHESIS model
can be used as the canonical model to integrate various
structured and semistructured Web-related data models. The
technique for various data models integration in one paradigm
has been considered in [10, 12]. This results in a uniform
representation of very different forms of data used in digital
library collections.

The idea of combination of structured and semistruc-
tured data has been probably firstly expressd in [9] and fur-
ther elaborated in [10]. For object model this idea has been
developed in [11].

References

[1] Abiteboul S. et al. Querying documents in object
databases. International Journal on Digital Libraries,
v.1, N 1, April 1997

[2] Abiteboul S. et al. The Lorel query language for

semistructured data. International Journal on Digital

Libraries, v.1, N 1, April 1997

Arocena G., Mendelzon A. WebOQL: Restructuring
documents, databases and Webs. In: Proceeedings of
ICDE’98, February 1998, Orlando, Florida

3]

[4] Atzeni P., Mecca G., Merialdo P. Semistructured and
structured data in the Web: going back and forth. ACM

Sigmod Record, N 1, 1998

Atzeni P., Mecca G., Merialdo P. The Araneus Data
Model (adm): a Logical Data Model for Web Sites.
Technical Report, Universit‘a degli Studi Roma Tre,
T2-R01, July 30, 1998

Christophides V., Cluet S, Simeon J.
Semistructured and structured integration reconciled.
http://www.rocq.inria.fr/verso/Jerome.Simeon /YAT/

(5]

[6]

[7] Florescu D., Levy A., Mendelzon A. Database tech-
niques for the World-Wide Web: A survey ACM Sig-
mod Record, N 3, 1998

[8] A. Hopmann, et. al., Web Collections using XML,
1997 http://www.w3.org/pub/WWW/Member/9703/-
XMLsubmit.html

[9] Kalinichenko L.A. Toward data description language
for data base with partly determined schema. Proceed-
ings of the IFIP Special Working Conference on Data
Description Languages, Belgium, North-Holland Pub-
lishing Company, 1975

[10] Kalinichenko L.A. Methods and tools for heterogeneous
data base integration. Moscow, Nauka, 1983

Kalinichenko L.A. SYNTHESIS: the language for
desription, design and programming of the heteroge-
neous interoperable information resource environment.
Institute for Problems of Informatics, Russian Academy
of Sciences, Moscow, 1993, 113 p.

[11]

Kalinichenko L.A. Method for data models integration
in the common paradigm. In Proceedings of the First
East European Workshop ’Advances in Databases and
Information Systems’, St. Petersburg, September 1997

[12]

(23]

(4]

[15]

[16]

[17]

(18]

Kogalovsky M.R., Kalinichenko L.A. Refinement of the
Synthesis language specification by the ODMG seman-
tics. INTAS-94-1817 Project report, IPI RAS, Moscow,
1998

Kalinichenko L.A. Compositional Specification Calcu-
lus for Information Systems Development. Proceedings
of the East-West Symposium on Advances in Databases
and Information Systems (ADBIS’99), Maribor, Slove-
nia, September 1999, Springer Verlag, LNCS, 1999

Lahiri T., Abiteboul S., Widom J. Ozone: Integrat-
ing structured and semistructured data. http://www-
db.stanford.edu/pub/papers/ozone.ps

Mendelzon A., Mihaila G., Milo T. Querying the World
Wide Web. International Journal on Digital Libraries,
v.1, N 1, April 1997

The Object Database Standard: ODMG 2.0. Ed. by
R.G.G. Cattell, D.K. Barry, Morgan Kaufmann Publ.,
1997

Osipov M., Machulsky O., Kalinichenko L. XML data
model mapping into the SYNTHESIS language object
model. This Conference Proceedings.

15

