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Abstract

In the near future, users will have access to a vast number of
digital libraries. For a given information need and limited
resources, there is the problem of selecting those libraries
which produce an overall optimum answer. This resource
discovery problem is additionally complicated by the diver-
sity of the sources, e.g. with respect to media, document
formats, indexing methods, database schemas and proto-
cols. Once a set of digital libraries has been selected, the
collection fusion problem deals with the problem of merging
the answers of these libraries in order to get a high retrieval
quality. This paper describes the specific problems and gives
an overview on the solutions that have been developed so far.

1 Introduction

Resource discovery in digital libraries deals with information
search in a networked, heterogeneous environment where
a large number of digital libraries are accessible. To the
user, this environment should make the impression of a sin-
gle large virtual library. This way, it would be possible to
exploit all the accessible knowledge in order to satisfy the
information needs of a user.

At first glance, the World Wide Web seems to provide al-
ready a solution to this problem: By putting the content of
all digital libraries as documents on the Web, the virtual dig-
ital library would be reality. However, besides the copyright
and commercial issues that stand against such a solution,
the major drawback would be the insufficient support of the
semantics of the digital documents — ranging from exter-
nal attributes to complex internal representations of docu-
ments. There is slow progress towards solving some of these
problems for the Web in general — e.g. by the Dublin Core
([Weibel 95]) set of standard attributes of Web documents,
XML ([Connolly 97]) as a means for modeling semantic doc-
ument structure and RDF ([Miller 98]) as an effort for sup-
porting interoperability of Web-based information services
in general. Although these efforts may solve some of the
problems of resource discovery, it is obvious that digital li-
braries have specific needs that can not be fulfilled by general
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Web-based information services and protocols.

In this paper, we will first outline the major dimensions
of the problem space and then address systems and content-
related issues in more detail'. For the latter, we will focus
on two specific problems of distributed information retrieval,
namely database selection and collection fusion. Finally, we
will give an outlook on future work.

2 Problem space and research issues

The problems associated with resource discovery in digital
libraries differ substantially from those in traditional infor-
mation retrieval. While some of the differences are issues
of scope — orders of magnitude increase in the number of
resources — others are due to technical and organization
contexts that are not a factor in traditional information dis-
covery. These include the interaction of the following fac-
tors:

e The non-deterministic behavior that results from the
complex interactions in widely distributed systems. The
availability and response time of components of a dig-
ital library implemented as a distributed system may
vary due the complex interaction of unrelated or loosely-
related factors. These include of network load, server
load, network partitioning due to external factors, and
human behavior.

e Diversity in the nature of information. This diversity
may exist along four dimensions that play a role in
the way people search for, access, and use informa-
tion — media (such as text, audio, video, etc.), format
(such as the encoding of image files in GIF, JPEG,
TIFF, etc.), logical structure (such as books, diaries,
anthologies), and semantics.

e Diversity in the types of users of the information sys-
tem. Not only are there many types of users, but the
spread between high-end and low-end users is getting
larger.

e Diversity in the types of devices and network connec-
tivity that provide access to information. Again, the
spread between high-end and low-end devices and con-
nectivity is getting larger.

1This part of the paper is based on the whitepaper “Resource
Discovery in a Globally-Distributed Digital Library” produced by the
joint NSF-EU Digital Libraries Working Group on resource indexing
and discovery in 1998.



e Increase in the number of protocols for locating infor-
mation. These include proprietary database protocols
and open standards such as Z39.50.

e The local administration and creation of information,
protocols, and services. While coordination among
these local parties is often a goal, the reality is that
distributed digital libraries are federations combining
the interests of numerous stake holders, often with con-
flicting interests.

e A diversity of notions of what is the “best” response to
a query. Complex factors such as information quality,
information overload, timeliness, and economics often
play vital roles in determining the appropriate query
response.

e The commodity nature of information and the atten-
dant incentives to abuse the “information marketplace”
with various forms of misinformation and attempts to
distort system behaviors.

e Diversity in the type of discovery-related services re-
quired by this broader spectrum of users, varying from
straightforward ad hoc retrieval to complex filtering,
summarization, and the creation of dynamically up-
dated information spaces.

The interaction of these factors can be summarized by
some rather broad statements about the solution space. The
solution to distributed information access will not be created
by imposing a single monolithic solution on everybody. In
addition, the best technical solutions may be impossible to
achieve due to non-technical factors such as political or le-
gal constraints. Instead, the solution space for distributed
searching must be expressed in terms of multiple targets,
acceptable behaviors, and layered solutions. Given a set of
acceptable levels of service and functionality for the vari-
ety of organizational, economic, and user contexts, what are
the layered solutions varying from no cooperation, to loose
agreements, to tightly coupled organizations?

In order to solve these problems, there is a need for re-
search in the following areas:

Organization: Given a diverse set of institutions, the task
is to develop methods of cooperation in order to pro-
vide access to their information in a manner that is
coherent and effective for users.

Systems: Ensure acceptable behavior in the face of lim-
ited and varied computation resources and connectiv-
ity and decentralized control.

Content: Handle large quantities of content and the un-
limited variety of content forms and types.

Human computer interface: On the input/output level,
the task is to get useful inputs from the users to display
results in a meaningful way. On the cognitive level, the
system is trying to understand what the user is trying
to do and helping the user to understand what the
system is actually doing.

Research facilities, metrics and measurements: For
the evaluation of resource discovery methods, test beds,
taxonomies and metrics have to be developed.

In the remainder of this paper, we will focus on the systems
and content issues.
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3 Systems issues

Access to distributed information is hampered by the multi-
plicity of material available on-line from a network of public,
private and commercial organizations, libraries, publishers,
vendors and individuals. There is a great need for the de-
velopment of a system infrastructure that facilitates navi-
gation and retrieval, and that provides mediating support
for the maze and variety of information available on-line.
This system infrastructure should be capable of identifying,
accessing, and retrieving the digital resources available. Fur-
thermore, it needs to provide a coherent and consistent view
of as many of the information repositories as possible.

The overall goal of system architecture is to ensure ac-
ceptable behavior in the face of limited and varied compu-
tation resources and connectivity and decentralized control.
The goal of system architecture is also to attempt future
proofing where possible and permit scalability as the system
grows. Several properties of distributed, federated informa-
tion systems complicate service guarantees:

e The variety of hardware (processors, network, proto-
col, display devices) complicates system optimization.

e Collection size and diversity, and the number of col-
lections affects system behavior.

e Diverse requirements for privacy and security affect
performance.

e Different models of system cooperation imply a spec-
trum of solutions for any given problem.

Three research threads are of central importance to the
development of an architectural infrastructure that supports
access to distributed information while ensuring acceptable
behavior: database selection, database interaction, and con-
sistency management.

3.1 Database Selection

Database selection at the systems level involves query rout-
ing to physical servers. This is distinguished from database
selection at the content level, described in section 5, which
involves logical query routing. This distinction is compara-
ble to the difference between URLs, which are physical lo-
cations in the Internet, and URNs, which are logical names
for entities that may exist at one or more physical locations.

In an environment where information is distributed across
multiple repositories, system designers must develop the in-
frastructure that selects carefully the repositories to which
a query is sent. Existing technology typically uses the triv-
ial approach of sending the query to all repositories. This
approach does not pay attention to scalability as networked
bandwidth is perceived as a given commodity and because
scalability requires a “logical” (top-down) design and coordi-
nated deployment. In a domain where there are potentially
one million repositories (an accurate description of today’s
Web) broadcast techniques are prohibitively expensive. In-
creasing the network bandwidth may help alleviate some of
these problems, however the rapidly growing population of
networked information will continue to outstrip network and
database server capacity.

Network-adaptive caching, replication and application
naming are used traditionally to conserve network and server
resources and reduce response times. For example, it is
possible to cache a subset of “hot” pages at many stages
of a network hierarchy and deploy caching and replication



servers at strategic locations across the Internet. Caching
and replication, however, have a down side as they introduce
the need to maintain updates and preserve consistency be-
tween caches/replicas and the original information. The use
of wide area distributed test beds, e.g., caching and repli-
cation servers, in conjunction with good measurements of
the locality of references would generate reference streams
that can be used to predict the expected performance. The
dependencies of performance indicators such as bandwidth
consumption, and latency with parameters such as the de-
gree of replication, document popularity, actual cache hit
rates, error rates needs and the usefulness of logs to deter-
mine the locality of references need to be investigated.

Caching and replication technologies also face a number
of legal constraints when deployed in distributed information
environments. Information providers and rights holders may
be sensitive to the degree to which caching and replication
expose them to illegal copying or distribution of informa-
tion. While it is widely recognized that reliability depends
on these technologies, there may be constraints on their use
such as decreased “time to live” on cache items or other
barriers to turning temporary copies into persistent objects.

The role of metadata, which is the focus of another work-
ing group, in query routing should be investigated. This
metadata could supply information about the characteristics
of the server that are relevant to database selection. For ex-
ample, if performance were an important criteria for query
routing (get the answer as quickly as possible), routers could
rely on historical load information made available by servers.
Another example might be routing based on freshness of in-
formation in a set of replicated servers. Using metadata
about the last update of a particular set of servers, a query
router could determine the best target for a query.

3.2 Database Interaction

Once a set of candidate repositories is selected, the system
infrastructure must interact with the repositories in the net-
work. This requires bringing together repositories of hetero-
geneous types that are used by different organizations. The
heterogeneity of the information available in these databases
— different naming conventions, data structures, search en-
gines, vocabularies for access — coupled with the wide vari-
ation in granularity and level of detail of the resources de-
scribed challenge the ability to identify and retrieve needed
information. The goal here is to achieve independence from
data formats, document models, and languages. It is impor-
tant to lower the barriers to allow access to heterogeneous
materials and to provide cross-collection search capabilities.
Access to existing heterogeneous resources should be pro-
vided without any relocation, reformatting and restructur-
ing of data. Each repository should be able to use its own
way to represent documents, but the documents should be
exchanged freely and displayed on heterogeneous computing
platforms. Integrated access could be provided to a variety
of search engines, relying on different document models and
query languages, by means of front-end systems responsi-
ble for query translation and mapping as well as post-result
filtering.

This infrastructure should support a broad range of inter-
action types, inter-repository protocols, distributed search
protocols (including the ability to search across heteroge-
neous databases with a level of syntactic/semantic consis-
tency), and object interchange protocols. Multiple protocols
may exist for multiple target points — an inter-repository
protocol that is optimal for one form of federation may be
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inappropriate for another form. Better mechanisms for pri-
vacy, security and protection, cooperative authentication,
and charging also need to be addressed.

3.3 Consistency Management

Finally, to ensure acceptable quality of service, the system
infrastructure must manage several levels of consistency as
documents, collections, and requirements change. Docu-
ments have a transient nature and their contents are likely
to change often over time. An increasing number of docu-
ments are constructed from a dynamic pool of components
to match user- and application-specific requirements. The
number of short-duration, “live” applications, like collabo-
rative white-board sessions, is increasing.

To accommodate change, existing Internet-wide search
services periodically poll for changes in documents. As the
number and frequency of changes increase, the amount and
frequency of polling increase, consuming ever more resources.
There will never be sufficient computational and network re-
sources to ensure complete consistency between the search
service index and the available documents. Thus, some flex-
ible compromises must be reached.

Ironically, a degree of inconsistency is acceptable in cer-
tain information systems. Even though the newspaper that
is delivered every morning contains information that is hours
old, it is still deemed to be a valuable resource. However, a
stock ticker with prices that are hours old is unacceptable
for online trading.

Complex linkages between resources in distributed digi-
tal libraries increase the complexity of consistency manage-
ment. Not only is there the question of maintaining con-
sistency between exact replicates, but attention must also
be paid to methods for maintaining consistency among ver-
sions, manifestations, summaries, translations, editions, and
other derivative and related forms of intellectual content.

To ensure acceptable behavior, distributed resource dis-
covery applications achieve the required degree of consis-
tency between index and collection within the boundaries
imposed by the availability of network and computational re-
sources. Traditional solutions for consistency in distributed
systems like call-backs, provide a mechanism for identifying
changes in tightly coupled federated systems. More recent
developments in communication based on publish/subscribe
models push change events from information providers to
information consumers. In general, improvements in consis-
tency management require investigation in communication
and negotiation protocols, registration and subscription ser-
vices, and object description frameworks.

4 Content

Distributed resource discovery is complicated by quantity
of content and the unlimited variety of content forms and
types. This content may include transient objects, dynamic
objects, distributed objects, and objects (works) that exist
in multiple manifestations on multiple servers. This section
describes content-related research issues in three subsections
— content-based database selection, query language trans-
lation and mapping, and semantic heterogeneity.

4.1 Content-based Database Selection

For a given query, limited system resources prohibit for-
warding the query to all possible databases. Therefore, the



system has to select the databases most appropriate for an-
swering the query. The primary goal of the selection is the
optimization of retrieval quality for which size and scope of
the database as well as the quality of the underlying retrieval
system have to be considered. Note that this content-based
selection problem is distinguished from the systems-based
issues described in section 3.1 in that selection is based on
content characteristics of a database (as a logical entity),
rather than on systems characteristics of physical servers
such as connectivity or load.

For this purpose, metadata about the databases is re-
quired, which can be of different granularity, from frequency
distributions of attribute values to high-level, condensed de-
scriptions. Other factors affecting the selection are search
capabilities (e.g., for doing a geographic search), and pricing
conditions. In order to perform an optimum selection, ap-
propriate methods for deriving metadata of different granu-
larity — for all kinds of media and representation languages
— and for estimating the relevant parameters have to be
developed.

A distributed environment presents distinct challenges
to the creation of content metadata for query routing. Con-
tent in individual databases has idiosyncratic characteris-
tics. Descriptive metadata about this content may vary in
quality, follow different standards, or may be non-existent.
Objects may be transient or “live”, in the sense that their
content is time-dependent.

A number of existing strategies have been developed to
gather content metadata about databases. However, these
methods are almost entirely text-based, calling for the devel-
opment of new classes of algorithms for non-text and com-
plex or compound objects. So far, two major strategies for
database selection have been proposed, which we call syn-
thetic vs. holistic. Synthetic strategies consider each query
condition separately, regarding each database with respect
to this condition, and then synthesizing the information
from all query conditions. Holistic strategies consider the
query as a whole, by looking for similar queries from the
past and how they performed on the different databases.

One interesting case is ratings metadata. In order to
guide users to the appropriate sources for their information
need or for selecting the most suitable answers, ratings of
databases or individual documents will be essential for fu-
ture digital libraries. Major criteria for ratings will be the
quality of the material, the appropriateness for the current
information need and filtering with respect to the user group
(e.g., children). Today, these ratings are part of a publisher’s
work. In digital libraries, where everybody can act as pub-
lisher, other institutions and new mechanisms will be nec-
essary for performing the rating and for making sure that
these ratings are considered when accessing digital material.

There is a need for implementing standards for the gen-
eral structure and format of ratings such that a system can
consider them during retrieval. For assigning the ratings,
appropriate infrastructures (e.g., rating agencies) have to
be established.

4.2 Query Languages

Future digital libraries will contain a variety of multime-
dia and hypermedia documents. For any type of document,
there are three different views, namely the logical view (deal-
ing with logical structure), the layout view (dealing with the
presentation of the document) and the content view. Fur-
thermore, documents or parts thereof may be assigned at-
tributes. Thus, there are four different aspects that may be
addressed in a query, but there is a lack of query languages
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integrating all these aspects (and for different media). Also,
expressiveness of the query language is an important issue,
since many current document retrieval languages are still
based on propositional logic, whereas database languages
are more expressive, but lack good mechanisms for deal-
ing with the intrinsic uncertainty of information retrieval.
Future query languages also should include operators for
specifying the logical structure, layout and content of the
result. In order to support interoperability, standards for
such query languages have to be devised.

A crucial issue is the representation of the content view,
which may be at different abstraction levels, namely syntac-
tic (or signal-based), semantic, and pragmatic (use-oriented).
For example, a photo may be described in terms of colors,
textures and contours, by giving the objects displayed and
their spatial distribution, or by describing the impression
that it makes on a typical viewer. For non-textual media,
there is a lack of automatic indexing methods generating
higher-level representations. Also appropriate methods for
generating these representations for multimedia documents
by combining evidence from the different media components
should be investigated.

Query languages may differ in the set of operators and
predicates as well as their general expressiveness. Appropri-
ate strategies for dealing with these differences are required,
e.g., preprocessing of the query (possibly generating several
queries for a single original query), post-processing of the
results or accepting the increased imprecision.

4.3 Semantic heterogeneity

A single database may contain a variety of document types,
and different databases may be based on different schemas
and use different query languages. From a users’ point of
view, many of these differences are not relevant for their
information needs. Thus, the system has to provide mech-
anisms for coping with semantic heterogeneity. For map-
ping between different schemas, ontologies may be used.
When the domains of related attributes in different schemas
are totally different, additional knowledge sources are re-
quired. Terminological resources support mapping between
different content representations (e.g., text-, classification-
or thesaurus-based) and cross-lingual retrieval requires mul-
tilingual dictionaries. Methods for automatically construct-
ing these resources and for using them in query mapping
have to be developed.

As general strategies for coping with semantic hetero-
geneity, automatic as well as semi-automatic methods may
be devised. Automatic methods will be based on the princi-
ple of retrieval as uncertain inference, accepting (to a limited
extent) imprecise mappings. Semiautomatic methods will
identify semantic ambiguities and ask the user to resolve
them.

5 A probabilistic framework for database selection

In this section, we describe a model which defines a decision-
theoretic criterion for optimum database selection ([Fuhr 99]).
This model considers relevance as well as other important
factors present in distributed retrieval (e.g. costs for query
processing and document delivery). We start from the Prob-
ability Ranking Principle (PRP, see [Robertson 77]), where
it can be shown that optimum retrieval performance is achiev-
ed when documents are ranked according to decreasing prob-
ability of relevance. Here performance can be measured ei-
ther in terms of precision and recall (which, in turn, refer to



relevance), or by means of a decision-theoretic model which
attributes different costs to the retrieval of relevant and non-
relevant documents.

Below, we first describe the basic model for optimum
database selection for a given number of documents to be
retrieved, thus deriving an optimum selection rule. Then we
discuss the consequences of this model for different applica-
tion situations. In the subsequent section, some related ap-
proaches to database selection are described, and it is shown
how they fit into the general framework.

5.1 Optimum database selection

In the following, we assume a basic setting as follows: A
user submits her query to a broker which has access to a
set of IR databases to which it may send the query. In re-
sponse, each database produces a ranked list of documents,
and the broker may request any number of documents from
this list; then the user is presented the merged output list.
There are database-specific costs for the retrieval of docu-
ments, and each database has its own performance curve
(e.g. in terms of recall and precision); in addition, the user
attributes different costs to relevant and nonrelevant docu-
ments presented to her. Now the broker’s task is to mini-
mize the expected overall costs by determining the number
of documents to be retrieved from each database.

In order to solve this problem, we develop a decision-
theoretic model. For this purpose, we assume that we have
a probabilistic event space @ x D, where D denotes the
set of documents contained in the system, Q is the set of
queries submitted to it; in addition, each pair (¢,d) € @ xD
is assigned a relevance judgment. Here we consider each
query as a single event, i.e. two users entering the same
query formulation are treated as different queries — think
e.g. of the large number of one-term queries submitted to
Web search engines. Since the system has limited knowledge
about queries and documents, it cannot distinguish between
queries (or documents) with the same representation, e.g.
the same set of terms. Thus, the system is not able to
minimize the costs for a single query. Rather, given a query
representation, its aim should be to minimize the expected
costs for an arbitrary query belonging to this representation.

For the formulation of the decision-theoretic model, we
start with the two basic assumptions underlying the PRP,
which we extend by an additional one for considering the
costs of retrieval in different databases:

1. Relevance judgments are based on a binary relevance
scale.

2. The relevance judgment for a document is independent
of that for any other document.

3. The costs for retrieving a set of documents from a
database are independent of those for other queries
or other databases.

The first assumption also can be generalized to multi-
valued scales, (see [Bookstein 83]). The second assumption
not only excludes effects due to similarity or other kinds of
dependence between documents, we also ignore the effect of
duplicates (i.e. retrieval of the same document from different
databases). The third assumption (which we have added to
those from the PRP) restricts the nature of the cost factors
such that we can regard costs for specific databases and
queries in isolation.

In order to estimate costs for a query, we need addi-
tional information about the user’s standpoint, namely the
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stopping criterion when looking at the the ranked output
list: Does the user want a specific number of documents, or
is she looking for a certain number of relevant documents?
(There could be even other criteria, e.g. stopping when she
has seen a certain number of nonrelevant documents in a
row.) As shown in [Fuhr 99], optimum database selection
depends on this criterion — unlike the single database case
where the PRP tells us that ranking according to decreas-
ing probability of relevance will minimize costs for a variety
of stopping criteria. Here we will focus on the number of
documents retrieved as stopping criterion.

For retrieving (selecting) s documents from a database
D;, we assume that there is a cost function Cf(s), com-
prising such factors like e.g. connection time, computation
costs and charges for delivery. Since the user is interested in
finding relevant documents, we attribute a cost factor C+
to each relevant document retrieved and C~ to each non-
relevant retrieved, with C* < C~. For a given query, if
we would know the number of relevant documents r that
we find among s retrieved from database D;, then the corre-
sponding costs would be C§(s)+rCt+(s—r)C~. However,
due to the limited knowledge of the system, it can only esti-
mate the number of relevant documents. For this purpose,
let us assume that we know the expected precision EP;(s)
as function of the number of documents selected. Then we
arrive at the following formula for the expected costs EC;(s)
for retrieving s documents from database D;:

ECi(s) = Ci(s) + sEP;(s)Ct + s(1 — EPi(s))C™ (1)

Assuming that we have ! different databases, and a corre-
sponding vector s = (s1,. .., s;) of numbers of documents to
be retrieved from each of them (with s; > 0fori=1,...,10),
we can estimate the overall expected costs as the sum of the
expected costs for the single databases:

l
EC(s) = Z EC;(si) (2)
i=1
Now we can formulate the optimum selection rule: Let
|s| = Zizl s;. For a given number n of documents to be

retrieved, determine s with |s| = n such that the expected
overall cost EM (n) is minimum, i.e.

l
EM(n) = min ZECZ(sz)

Isl=n 521

®3)

This selection rule is rather general, it is only based on
the three assumptions from above and holds when the user
specifies the number of documents to be retrieved.

5.2 Discussion

Here we discuss the consequences of the selection rule (3).
In order to motivate the subsequent considerations, let us
ignore for a moment that EC(s) is a discrete function and
assume it to be continuous (i.e. we would allow fractions
of documents to be retrieved). Using Lagrange multipliers
for specifying the criterion function, we find out that for
the optimum solution the cost differentials 8EC;(s;)/s; are
equal for all ¢ with s; > 0 (see e.g. figure 1).
Now we return to the discrete case where we can retrieve
whole documents from a database only. Let
A= { ECi(k) — ECi(k—1) ifk>0
=10 ifk=0



Table 1: Notations used in this section

symbol | meaning
D; database
T # relevant documents retrieved
s # documents retrieved (selected)
s vector (s1,...,8;) of # docs to be retrieved
from Dy,...,D;
Ci(n) | costs for selecting n documents from D;
c? fixed costs for query processing in D;
cé costs for retrieving a document from D;
ct user costs for viewing a relevant document
c- user costs for viewing a nonrelevant document
EP;(s) | expected precision when selecting s documents
from D;
EC;(s) | expected costs for retrieving s documents
from D;
EC(s) | expected costs for retrieval of s documents
from Dy,...,D;
EM(n) | min. expected overall costs for n documents
P;(R) | recall-precision function for database D;
R; # relevant documents in D;
q query
d document
t term
Ujm indexing weight of term ¢; in document d.,
v; sum of indexing weights for term ¢; in database
w; search term weight of term ¢;
|D;i| | size of database D; (# documents)

denote the cost for retrieving the kth document from data-
base D;. Obviously these incremental cost differences can-
not always be equal for all databases contributing to an op-
timum solution. The example in table 2 shows that e.g. for
n = 4, we have A1 = 4 and Ay = 2 for the optimum
solution sopt. As a discrete approximation to equal cost
differentials, we define the concept of a uniform vector:

Let Amax(s) = max; A;;;. Then we call s a uniform
vector for a set of databases if the following holds:

Vi: Ai,si = AII)&X(S) \ Ai,si +1 > Amabx(s) (4)

Then we can show the following correspondence between
uniform vectors and optimum solutions: For a given set of
databases DB = {Dy,...,D;} , a given number n of re-
quested documents and any vector s (with |s| = n) yielding
minimum expected overall costs, there exists a uniform vec-
tor with the same costs.

Unfortunately, the reverse is not true in the general case,
i.e. not every uniform vector yields minimum costs. Thus,
let us consider a specific but realistic sub-case, namely that
the expected costs for each database are monotonously in-
creasing. We call a set of databases cost-monotonic, if for
all queries: Vi Vk>0 A < Aj r4+1. However, for many ap-
plications, the costs for the first document will be higher
than the additional costs for the next document, due to the
query processing costs. Thus, we call a system weakly cost-
monotonic, if for all queries: Vi Vk>1 A < Ajp4+1. The
latter property usually holds when the incremental process-
ing costs per document are constant, i.e. (for s > 0)

Ci(s) = CF + sCf, (5)
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where C? denotes the query processing costs for database
D; and C¢ are the additional costs per document delivered.
Since users prefer relevant documents (Ct < C™), accord-
ing to eqn (1) the assumption is fulfilled when the retrieval
quality is monotonically dropping, i.e.
ViVs>0 EP;(s) > EP;(s +1). (6)

Thus, only when we can ignore the query processing
costs, cost-monotonicity seems to be a reasonable assump-
tion. For this case, it can be shown that any uniform vector
yields an optimum solution.

We have seen how uniform vectors as discrete approxima-
tion to equal cost differentials relate to optimum solutions.
Unfortunately, the last statement is only applicable when
we can assume cost-monotonicity, which is not realistic in
most settings.

Let us return to the assumption of a continuous function
EC(s) again, bearing in mind that this is an approxima-
tion to the real situation. Furthermore, let us assume that
we have weakly cost-monotonic databases where assump-
tions (5) and (6) hold. Thus, eqn (1) can be rewritten as

ECi(s) =C? +s(C{ +C™) = sEPi(s)- (C~ =CT) (1)
Then we get for the cost differential:
6?5’ =C¢ +0C" —EPi(s)-(C~ —C™) (8)

Since the retrieval quality is assumed to be monotonically
decreasing, we see that for large s, when the expected pre-
cision is almost zero, the slope of the expected cost function
is approximating C¢ + C~, ie. the costs per nonrelevant
document.

EC;

[4

EC,

EC, EC; EC,

N

Fig. 1: Sample expected cost functions for CY = 0 with
optimum solutions a, b

Now we consider some sub-cases of the general case of a
linear cost structure and monotonically decreasing retrieval
quality, depending on the structure of the cost factors:



EP

N

Fig. 2: Sample expected precision curves with optimum
solutions g, . ..,d

1. C? = 0 for i = 1,...,I: In this case, we have cost-
monotonic databases. Sample functions are depicted
in figure 1. Since a specific number of total documents
retrieved implies an equal slope 8EC;(s;)/0s; for all
curves, all databases for which there is a point with
this slope on the curve will contribute to the optimum
solution. In figure 1, the points corresponding to two
solutions a and b are marked, showing that for the first
solution, only two of the databases are involved. The
set of databases involved grows as the total number of
relevant documents increases; a database contributing
to a small number always will stay involved for larger
numbers, too. This feature is important for incremen-
tal retrieval where a user specifies neither the number
of documents cost nor the maximum overall costs in
advance.

2.C2 =0fori=1,....,1 and C¢ = ... = Cf: When
also the costs per document retrieved are equal for all
databases, then there is a direct relationship to re-
trieval quality. From eqn (8) it follows that for the
cost differentials being equal, also the expected preci-
sions must be equal in this case. In other words, the
databases contributing to the optimum solution oper-
ate at the same precision level. Figure 2 shows the
points for four different solutions (g, ... ,d), where e.g.
for b, only databases 2 and 4 reach this precision level.

3. C? > 0 for some ¢ € [1,I]. If there are databases
with nonzero query processing costs, then the set of
databases that actually contribute to the solution will
depend on the total number n of relevant documents.
Here databases involved for small values of n may not
contribute to the optimum solution as n grows (see
the example in table 2). With regard to incremental
retrieval, we have a conflict here: Given that the user
first requested 1 documents and then another 1y doc-
uments, the minimum expected costs for this stepwise
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procedure may be higher than for retrieving n1 + n2
relevant documents at once.

Table 2: Example of minimizing expected costs for two
weakly cost-monotonic databases

k|| ECi(k) | Aig || ECo(R) | Dok || Sops(K) | EM(K)
1 6| 6 T 7 (1,0) 6
2 10| 4 9| 2 (0,2) 9
3 16| 6 14| 5 (0,3) 14
4 2| 6 20| 6 (2,2) 19
5 28| 6 2% | 6 (2,3) 24

5.3 Towards application

With the derivation of the overall cost function EM (n) in
eqn (3), we have defined a rule for optimum database selec-
tion. So each method for database selection should aim at
approximating this optimum. In most applications, it will
be difficult to estimate the parameters occurring in EC;(n).
This situation is similar to (or even worse than) the difficul-
ties with the PRP, where the estimation of the probability
of relevance of a document also poses problems. However,
with our model in mind, we can start with crude approxima-
tions of the parameters, apply it and then check how far our
estimates deviate from the real parameters — thus telling
us where we should spend effort for improving our methods.

In the following, we describe a general procedure for ap-
plying our model. In principle, the following steps have to
be performed:

1. For each database D;, estimate the expected precision
function EP;(s) for s=1,...,n.

2. Compute the database-specific cost functions EC;(n)
fors=1,...,n.

3. Derive the optimum cost function EM (n). (Algorithms
for this step are given in[Fuhr 99].)

For the estimation of the expected precision, we propose
to start from the expected recall-precision-curve. Since eval-
uations of IR systems typically use this curve, we deem it
reasonable to use it also as a starting point. The underly-
ing assumption is that, expected recall-precision varies less
than expected precision as function of the number of docu-
ments retrieved, and so evaluation studies average over re-
call, not over number of documents retrieved. On the other
hand, little is known about the behavior of query-specific
RP curves, and empirical data like e.g. the results from the
TREC conference [Harman 95] indicate that there is a great
variation in these curves, so further research will be required
for achieving good estimates for recall-precision curves.

For the time being, heuristic methods will have to be
applied instead. For example, a simple assumption would
be a linear function, with P(0) = P° and P(1) = 0, thus
leading to the approximation P =~ P°(1 — R); here only
PP has to be chosen. In the absence of any query-specific
knowledge, one might assume that the RP function is equal
for all queries. However, in some cases additional informa-
tion may be available. In practical applications with a set of
heterogeneous databases, very often a query contains a con-
dition which cannot be evaluated by the IR system running



a specific database; then already P(0) will be very low (see
[Fuhr 96]). It also may be feasible to assume functions that
are typical for certain kinds of IR systems, e.g. Boolean vs.
probabilistic systems.

Given the recall-precision function P;(R) for a database
D;, we need the expected number of relevant documents
R; in D; for deriving EP;(s). Let r denote the number of
relevant documents retrieved, then we have EP;(s) =r/s =

For the estimation of the number of relevant documents
in a database, a simple method can be based on a linear re-
trieval function that is derived from the uncertain inference
view of information retrieval [Rijsbergen 86]. Thus, for a
query g, the probability Pr(rel|g,d) of a document d being
relevant can be formulated based on the probability of the
(uncertain) implication Pr(g + d):

Pr(rellg,d) = Pr(rellg + d) Pr(qg« d)+
Pr(rel|-(g « d)) - Pr(—(q + d))

~ Pr(rellg « d) - Pr(q « d)
The probability that a random document from a database
D implies g is

Pr(q + d|d € D)

> "Pr(d) - Pr(g + d)

debD

= ﬁZPr(q(—d).

debD

We estimate the expected number of relevant documents
in D:

E(rel|g, D) = Pr(rel|g + d) Z Pr(qg « d)
deD
The most widely used type of retrieval function is the

linear one (see e.g. [Turtle & Croft 91], [Wong & Yao 95]).
For this case, the last equation can be simplified further.

Pr(g ¢ dm) = Y Pr(gt;)Pr(t; «dn) (9)
t;€q

= Z WiUjm (10)
t;€q

Here w; = Pr(q + t;) denotes the search term weight of
term t; and ujm = Pr(t; < dn) is the indexing weight of ¢;
in document d.,.

Thus, the probability that a random document in D im-
plies ¢ can be computed as follows:

> o

dm€D t;€q

1
- BT X e

t;€q dm€D

= ﬁzwﬂ}j

t;€q

Pr(g+dlde D) = (11)

(where v; =, _p, ujm).

42

The expected number of relevant documents in D can be
approximated by
E(rel|g, D) = Pr(rel|g + d) - Z W; v (12)
t;€q
Unless we have query-specific relevance feedback data, we
can only assume a global constant ¢ for estimating Pr(rel|q +

d). Now we can approximate the number R; of relevant doc-
uments in the database D; for the actual query as follows:

Ri ~c E W;Vj.

t;€q

(13)

This formula for estimating the number of relevant docu-
ments has the same structure as the retrieval function (10).
However, whereas a retrieval function computes the retrieval
status value for each document, formula (13) yields the ex-
pected number of relevant documents for each database,
i.e. the estimation procedure treats databases like meta-
documents. For applying this formula, a broker would need
only the parameter v; for each term occurring in a database.
Thus, by applying the same data structures and algorithms
as for ordinary retrieval, formula (13) can be evaluated rather
efficiently, even for a large number of databases.

6 Database selection — models and experimental
results

Although the theoretical approach presented above forms
a general framework for database selection, it does yield a
model for actually solving this task. The relationship be-
tween this framework and database selection models is the
same as that between the PRP and probabilistic retrieval
models. Fortunately, a number of database selection models
has been developed already independently of the framework
presented here. Now, we will show how these models fit into
the framework.

The Gloss system described in [Gravano et al. 94] and
[Gravano & Garcia-Molina 95] takes a heuristic approach to-
wards database selection. Based on the vector space model,
two additional assumptions are made:

1. All databases use the same retrieval function for com-
puting retrieval status values (RSV).

2. Given a query ¢ and a document d, the document is
only useful (potentially relevant) for ¢ if its RSV ex-
ceeds a certain threshold [.

Then a measure of goodness for a database D with respect
to a query ¢ and a cutoff value ! is defined:

>

deDAsim(g,d)>!

Goodness(l,q, D) = sim(q, d) (14)

In addition, different assumptions about the distribution of
term weights within a database can be made, namely either
high positive or high negative correlation of different terms.
However, for a cutoff value I = 0, the Goodness measure
is the same in both cases. If document term weights and
search term weights follow the probabilistic interpretation
as shown in eqn (10), the Goodness measure corresponds to
the estimated number of relevant documents in a database
according to eqn (13) (with ¢ = 1). In [French et al. 98],
a relevance based evaluation of the Gloss method is per-
formed. It turns out that Gloss performs well at predicting



the distribution of RSVs within databases; however, with re-
spect to retrieval quality (i.e. selecting those databases that
contain many relevant documents), the performance is only
moderate.

A similar result is described in [Govert 97], where the
estimation formula (12) is investigated. It turns out that in
principle (for the small set of databases used in this study),
this formula gives good approximations of the number of
relevant documents; however, the factor Pr(rellg « d) is
highly query-dependent, and there is no obvious method for
estimating this parameter.

The CORI model presented in [Callan et al. 95] performs
database selection based on a new collection ranking formula
for databases; this formula is similar to document retrieval
based on tf - idf weighting, but treats collections like doc-
uments. The belief P(¢;|D) in collection D with respect to
term ¢; is determined by:

T fi

fi +50+150-s(D)/s5
140.5

log ( e )

log(l +1)

04406-T -1

I =

P(t:|D)

where:
fi number of documents in collection D containing ¢;,
g; number of collections containing #;,
! number of collections to be ranked,
s(D) number of words in D,
5 mean of s(D) for the collections to be ranked.

The overall weight of a collection D w.r.t. a query g de-
pends on the query structure, but is usually just the aver-
age of the P(¢;|D) values for the query terms. Thus, this
function is similar to our weighting formula (13), but uses a
different weighting scheme for the terms in a collection. In
[Xu & Callan 98], this approach is extended to phrase in-
formation and query expansion, and it is shown that these
techniques improve the outcome of the database selection
process.

In [French et al. 99], a comparative study of the database
selection methods of Gloss and CORI is presented, where
CORI clearly outperforms Gloss. A detailed analysis of re-
sults shows that the major weakness of Gloss is the fact
that it does not distinguish between a database with many
marginal relevant documents and another one with a few
highly relevant documents in case the sums of RSVs are the
same. With respect to our general framework, we also would
assume that the expected number of relevant documents
is the same, but we could handle this problem by assum-
ing different recall-precision functions, where the database
with the marginal relevant documents yields a lower retrieval
quality and thus the other database should be preferred.

A probabilistic model for database selection and data fu-
sion is presented in [Baumgarten 97] and [Baumgarten 99].
Based on two standard probabilistic retrieval models for the
non-distributed case (namely the binary independence re-
trieval model ([Robertson & Sparck Jones 76])and the re-
trieval model with probabilistic indexing ([Fuhr 89]), dis-
tributed versions of these models are developed. Then data-
base selection is performed based on the expected distri-
butions of RSVs. Due to the log-linear structure of these
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retrieval models, there is no direct correspondence to the
number of relevant documents or cost parameters of our
general framework. However, this approach has the advan-
tage that it is based on a well-founded model for distributed
retrieval, whereas other approaches are more heuristic.

All these approaches (as well as the estimation formula
(13) derived in the previous section) perform database selec-
tion by using a term-wise weighting formula for databases.
As an alternative approach, two query-based strategies are
described in [Voorhees et al. 95]. Both of these strategies
consider similarities between queries. In the first case, simi-
larity is based on term-wise comparison of queries, and then
relevance feedback information from the most similar past
queries is used for database selection. The second method
first performs query clustering based on the sets of retrieved
documents from the different databases. By averaging the
query vectors of a cluster, the centroid vector is formed; for
a new query, first the most similar centroid vectors are de-
termined, and then relevance feedback information is used
for database selection as before.

A system-oriented aspect of database selection is investi-
gated in [Dushay et al. 99], namely response time of database
servers. It is shown how response time statistics from the
past can be used for predicting response time for the cur-
rent query. In terms of our general framework, response
time could be modeled as cost factor that contributes to
query processing costs, and thus both retrieval quality and
response time could be considered for database selection.

7 Collection fusion

Once the databases to be used for answering a query have
been selected, the query can be sent to these databases in
order to compute the answers. When the answers are re-
ceived by the site initiating the query (or an intermediate
broker), they have to be merged in order to produce a single
result. The final retrieval quality depends heavily on this
collection fusion step. Theoretically, the PRP gives a hint
how this task should be performed — namely by ranking
the documents from the union of all answers according to
decreasing values of their probability of relevance. However,
since the single databases have no or little knowledge about
the overall term statistics (i.e. global idf values), the RSVs
of these databases are poor predictors of the probability of
relevance.

The distributed retrieval model in [Baumgarten 99] avoids
this problem by collecting term statistics from all databases
and propagating the global idf values to the selected data-
bases. The STARTS protocol proposed in [Gravano et al. 97]
also is based on global idf values; instead of propagating
these to the databases, however, the databases are requested
to transmit the document term weights for each element of
the answer set, so that a recomputation of RSVs based on
the global idf values can be performed.

In [Callan et al. 95], four different strategies for collec-
tion fusion are investigated:

interleaving takes documents from the different ranked
answer list in a round-robin fashion, i.e. only the rank-
ings, but not the RSVs of the single databases are
taken into account.

raw score merge uses the RSVs from the different data-
bases and merges according to descending RSVs.

normalized merge modifies the original RSVs by consid-
ering the collection weights from the database selection



process, before merging according to these “normal-
ized” RSVs.

weighted merge uses global idf weights for computing the
RSVs on which the merging process is based.

As expected, interleaving performs worst, and weighted merge
gives the highest retrieval quality. Raw score merge also

gives poor results. Fortunately, the outcome of normalized

merge is close to that of weighted merge; since in this case,

no global idf values have to be considered (and thus the

corresponding communication and computation overhead is

avoided), this method seems to be most appropriate for per-

forming collection fusion.

8 Conclusions and outlook

In this paper, we have given a survey on research problems
related to resource discovery. We have shown that the di-
versity of users, information needs, media, indexing schemes,
document formats, database schemas, types of services, sys-
tems, protocols and other parameters pose a large number
of problems for which only partial solutions will be available
in the near future.

For the specific problems of database selection and col-
lection fusion, we have described the approaches that are
currently available. Relating these solutions to the dimen-
sions of the problem space, it turns out that only a few of
these parameters have been considered yet, thus these solu-
tions are applicable in very limited domains only. On the
other hand, these approaches may serve as starting points
for the development of more complete models.

Interaction with existing global search services for the
Web leads to the misconception that the future of distributed
search simply involves improvements in quality of response
to the list of keywords in a query. While improvements in
precision and recall, for example, are important, efficient
and effective distributed search will potentially enable the
construction of entirely new classes of information-based ap-
plications. New kinds of information, new forms of user in-
teraction, and new business models place entirely different
demands on distributed search technology.

Over the next decade, today’s information applications
will experience significant evolution as technology improve-
ments lead to ubiquitous access to networks, improvements
in bandwidth and reliability, and increase in the amount of
quality information available.

Today’s information-based applications rely on static doc-
ument collections. Tomorrow’s applications will build and
maintain dynamic collections of networked documents that
adapt to changing requirements, technology, and availability
of information. Embedded within these applications will be
complex, domain-specific, distributed information retrieval
software that will find, filter, sort, and present information
relevant to the topic of interest. When the information is
the application, the underlying technology must adapt.
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