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Abstract

The rapid proliferation of widely-distributed data and docu-
ment collections raises the need for wrapper/mediator archi-
tectures that can handle the challenges of wide area query
processing. Traditional query and search techniques do not
scale to large numbers of repositories and cannot cope with
the unpredictable performance and (un)availability of access
to such repositories. Research at the University of Maryland
is aimed at addressing the following challenges:

e Query planning for wide area networks: We describe
Web query optimization techniques that use a Web-
Wrapper cost model (WCM) and WebPT - a tool to
predict response times from WWW sources.

Coping with unexpected delays: Query Scramblingis a
reactive query execution scheme that adapts the query
plan in response to runtime delays. XJoin is a small
footprint, fully pipelinable join operator that automat-
ically adjusts the flow of tuples during query execution.

Planning with alternate sources: We investigate strate-
gies for chosing among multiple alternative data sources,
and techniques to adjust these decisions when severe
delays are encountered.

can be published on the WWW using XML, and we
investigate source selection using content and quality
metadata.
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1 Introduction

The rapid growth of the Internet and Intranets, vendor sup-
port of database interoperability protocols such as JDBC
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[26], OLE/DB [6, 14], etc., and the emergence of XML
to facilitate the exchange of semi-structured data via the
WWW, has dramatically increased the number of Web ac-
cessible data sources, WebSources. Wrapper/mediator ar-
chitectures [39] that are able to handle query processing with
heterogeneous sources have been developed in the follow-
ing projects: TSIMMIS/RQDL [42, 30, 38], Garlic [25, 23],
DISCO [17, 29, 35, 5], and Information Manifold (IM) [22].

These architectures have to be tailored for query process-
ing with large numbers of sources in a dynamic wide area
environment. Traditional query and search techniques do
not scale to large numbers of repositories and cannot cope
with the unpredictable performance and (un)availability of
access to such repositories. Research at the University of
Maryland is aimed at these problems and we report on our
results in addressing the following two challenges:

Query planning for wide area networks: Mediators must
respect the limited capability of Web accessible WebSources
when generating plans. Both the capability and the cost
of the queries submitted to these WebSources must be con-
sidered in obtaining a good plan. Providing costs for ac-
cessing WebSources is complicated since these sources are
autonomous, and details about their implementation is un-
known. Further loads on the WebSource and the network
may affect the query processing costs. We have developed
Web query optimization techniques that use a WebWrapper
cost model (WCM) and WebPT - a tool to predict response
times from WebSources.

Coping with unexpected delays: Traditional distributed
query processing technology performs poorly in the wide-
area environment because unexpected delays encountered
during query execution directly increases the query response
time. The apparent randomness of such delays in the wide-
area environment makes planning for them during query op-
timization nearly impossible. We have developed two tech-
niques to cope with runtime problems. Query Scrambling is
a reactive query execution scheme that adapts the query
plan in response to delays that are detected at runtime.
Query Scrambling has been shown to be highly effective in
coping with initial delays. XJoin is a small footprint, fully
pipelinable join operator that automatically adjusts the flow
of tuples during query execution in response to all types
of delay, including slow delivery and bursty arrival rates.
XJoin focuses on streaming answer tuples incrementally to
the users as quickly as possible, rather than on optimizing
the delivery of the last tuple.

In addition to our research on these two challenges to
support efficient query execution, there are two other tasks
that are currently being investigated. The first task con-



siders the situation where alternate sources may be avail-
able. Strategies for chosing among multiple alternative data
sources, and techniques to adjust these decisions when se-
vere delays are encountered will be discussed. Finally, we
address the problem of using the WWW and XML to publish
and locate sources, and their content and quality metadata.

In the next section, we briefly introduce our wrapper me-
diator architecture. We then discuss our research in query
planning for WebSources; coping with unexpected delays;
query processing with alternate sources; and source publish-
ing and selection using content and quality data described
in XML. Section 7 concludes.

2 Architecture

Figure 1 presents our wrapper mediator architecture. The
mediator is an extension of the Predator ORDBMS [31,
32] and our mediator uses the relational data model. The
shaded modules represent extended Predator modules and
the unshaded ones are new modules that have been devel-
oped to support the mediator.

WebWrappers [9] are built to reflect the limited capabil-
ity of WebSources. The capabilities of the sources are re-
flected in the forms-based interfaces that accept queries on
the WWW. A WebWrapper utilizes both simple and com-
plex extractors [9]. Typically, a simple extractor is con-
structed corresponding to the format of some HTML or
XML document, and extracts answers from it. A complex
extractor may use the output of one or more extractors,
where each extractor provides a subset of values used by
the complex extractor. Complex extractors typically access
multiple documents where each document may have links to
other documents. The WebWrapper provides relevant statis-
tics and costs (delays) for the WebSource. To do so it uses
a WebWrapper Cost Model (WCM), and a Web Prediction
Tool (WebPT) that can estimate response times (delays) for
WebSources.

A WebWrapper Query Broker provides interoperability
between the Predator engine (in C++) and WebWrappers
(in Java) a la CORBA. The Predator evaluation engine was
extended with several operators such as the external scan
and dependent join operator [13, 18] to implement the (lim-
ited) query processing of the WebSources.

A Web query optimizer (WQO) is responsible for the
task of planning and query optimization with limited capa-
bility sources and it uses a tool for capability based rewriting
(CBR Tool). It also has the responsibility to choose partic-
ular implementations of wrapper queries to be evaluated at
the WebSources. A Query Scrambling enabled optimizer has
the responsibility of re-planning when unexpected delays are
encountered. The Predator evaluation engine has also been
extended with XJoin, a fully pipelined join operator.

The Web query optimizer, the WebWrapper cost model
and the WebPT, the scrambling enabled optimizer and the
XJoin operator will be discussed in detail in this paper.

3 Query Planning for WebSources

A Web query optimizer for WebSources must be able to
produce good query execution plans that respect the lim-
ited capabilities of WebSources and reflect the often unpre-
dictable costs of query execution. In this subsection, we
briefly describe a cost model for WebSources, and a tool for
predicting response times, WebPT. We then briefly review
the functionality of the Web query optimizer (WQO).
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3.1 Cost Model for WebSources

Providing a cost model for WebSources is difficult since
sources are autonomous, and their implementation details
are unknown and may change. There is also variability in
a wide area environment. We use query feedback from sub-
mitting queries to WebSources to construct a cost model.

A WebWrapper Cost Model (WCM) maintains several
statistics for a source. One statistic is the result cardinality,
or the number of tuples returned by an extractor, when a
query is submitted to a WebSource. One of our observations
is that there could be some skew in this cardinality and this
skew may depend on the specific bindings in the query that
is submitted to the WebSource. A second statistic is the
number of page access by a simple (or complex) extractor,
to extract all the data for some query. This number may also
be affected by the specific binding. A third statistic is the
amount (quantity) of data that is downloaded by an extrac-
tor. Typically, when a query is submitted to a WebSource,
an HTML page is constructed corresponding to the answer,
or a part of the answer, if the result cardinality is very large.
This page may have links to other pages, which affects the
number of pages that are accessed. All three statistics im-
pact the cost of a mediator query and are provided to the
Web Query Optimizer to chose a good plan.

A WebWrapper should also provide estimates of the re-
sponse time (delay) of accessing a WebSource. Further,
this time may be decomposed into Remote_Cost and Down-
load_Cost. The Remote_Cost is the time elapsed after the
source accepts the query and when it begins returning data
and the Download_Cost is the actual time to download the
answers. Typically, the Remote_Cost depends on the result
cardinality, and the Download_Cost depends on the amount
of data that is downloaded. There are other factors that af-
fect the cost in a wide area network and they are discussed
shortly. Consequently, there may be considerable variance
in the response times of queries to a WebSource and the
WCM makes use of a tool to predict response times. This
tool, the WebPT, is discussed in the next section.

Our research reported in [10] analyzes the factors that af-
fect the response time. Figure 2 plots query processing times
at the WebSource, or Remote_Cost, for the ACM digital li-
brary (ACM) [1], and the California Campaign Contribution
database (CA) [12]. The Figure plots the time versus the
result cardinality, for random queries submitted over several
months in 1999. The linear equation plotted in the Figure
represents the results of a linear regression of the time versus
the cardinality. Figure 3 plots the time to download data
from the California Campaign Contribution database (CA)
[12] and FishBase (FB) [16]. The linear equation is the re-
sult of the linear regression of time versus file size. As can
be observed, there is considerable variance in these costs,
and this behavior is typical of a wide area network.

3.2 WebPT - A Tool to Predict Response Times
from WebSources

In the previous subsection, experimental data collected from
WebSources indicates that result cardinality and file size
were not the sole factors that affect remote query processing
costs and time to download data from WebSources. There is
little knowledge about the impact that dimensions such as
Time of day, Day, etc., can have on response times. Qur hy-
pothesis is that these dimensions can be used to reflect usage
or load, on the WebSource and the network, and thus, can
help predict response times. There has been some research
on learning traffic patterns for the Internet [34]. The Net-
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work Weather Service, NWS [41], is a general facility that
provides dynamic resource performance forecasts for wide
area networks. However, these systems do not use learning
from WebSources to predict response times.

We have developed a Web Prediction Tool (WebPT),
that is based on learning using query feedback from Web-
Sources [20]. The WebPT uses dimensions Time of day, Day,
Quantity of data (file size), result cardinality, etc., to learn
response times from a particular WebSource, and to predict
the expected response time (delay) for some query. WebPT
learning is similar to CART [8], except that it uses sim-
pler techniques (compared to regression) to split the query
feedback along each of the relevant dimensions, during the
learning process.

Experiment data (query feedback from submitting queries)
was collected from several sources, and those dimensions
that were significant in estimating the response time were
determined. The WebPT has been trained on the collected
data, to use the significant dimensions to predict the re-
sponse time, as well as a confidence in the prediction. In
those situations where the Remote_Cost and Download_Cost
are both significant, these times will be learned and pre-
dicted independently. We describe the WebPT learning
algorithms, and report on the WebPT learning for Web-
Sources in [20]. Our research shows two significant results
with respect to WebPT learning. The first result is that the
WebPT does learn, and that as it is trained, the (cumula-
tive) error decreases, and the confidence in the prediction
increases. The second result is that we can improve the
quality of learning by tuning the WebPT features. These
features include training the WebPT on the logarithm of the
input data; including significant dimensions in the WebPT;
and changing the ordering of significant dimensions in the
WebPT.

We have compared WebPT learning with the more tra-
ditional Neural Network (NN) learning in [11]. WebPT
learning is always online, i.e., it learns from each new query
feedback. NN training can be online (per-pattern learning),
which is time consuming and can be very sensitive to the
choice of training parameters. The more common and ro-
bust learning is offline batch learning (per-epoch). This is
less suitable for a Web environment, with large variances
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in response time, where there may be insufficient training
data, and where the environment is dynamic and should be
continually monitored. We compared the WebPT learning
with both types of NN learning, in a number of experiments
where the WebPT and the online (per-pattern) and offline
(batch) NN were trained and tested on the same data.

Figure 4a compares the WebPT with the offline (batch)
NN, for experimental data from which outliers (noise) have
been eliminated, and Figure 4b similarly compares the of-
fline and online NN. The performance of the WebPT is very
comparable to the performance of the offline (batch) NN.

The results of our study indicate that the ease of train-
ing the WebPT makes it preferable, compared to the per-
pattern NN, for online monitoring and prediction. We can
infer that for many WebSources, corresponding to an unsta-
ble environment, the more sophisticated NN learning does
not provide much of an advantage. From further study, re-
ported in [10], we conclude that both the WebPT and the
more sophisticated NN learning are useful in constructing
a WebWrapper Cost Model for the dynamic Web environ-
ment.

The WebPT approach has some advantages over other
learning based techniques such as regression techniques or
neural networks. One advantage is the simplicity of the
WebPT prediction model and the flexibility provided by the
WebPT to manipulate the parameters that control learn-
ing. A second advantage is that the WebPT can also learn
when the dimensions may not be significant in predicting
the response time, and where a (lack of) confidence in the
WebPT prediction reflects the unpredictable nature of pre-
diction for WebSources. This knowledge can be used to tune
a Web query optimizer and to interpret its choices.

3.3 A Web Query Optimizer

A Web query optimizer (WQO) is responsible for the task
of planning and query optimization with limited capability
WebSources. It uses a tool for capability based rewriting
(CBR Tool) and an extended randomized relational opti-
mizer to produce good plans.

In a pre-optimization phase, the CBR Tool uses Web-
Source limited capability descriptions to produce (multiple)
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pre-plan(s) for a mediator query. A pre-plan consists of (pos-
sibly ordered) subgoals to be executed in the WebSources or
the mediator. The pre-plan identifies (1) ordering among
subgoals, (2) relevant WebSource implementations (WSI) to
evaluate subgoals in the WebSources, and (3) restrictions on
queries submitted to the wrapper for the corresponding Web
Source. A Web Query Optimizer (WQO) uses a two-fold op-
timization on pre-plans to obtain a good plan. In the first
stage, the WQO explores the search space of specific Web-
Source implementations (WSI), corresponding to wrapper
calls, to choose a good WSI. In the second stage, the WQO
uses a (randomized) relational optimizer to re-order media-
tor subgoals following traditional (cost-based) optimization
strategies. The pre-plan knowledge (ordering and binding
restrictions on the WSIs) is used by the Web optimizer to
drive the relational optimizer, so that the latter respects the
pre-plan.

Our approach has the advantage that the WQO uses
the pre-plan to actively explore the search space of WSI for
mediator subgoals. While doing so, the WQO may exploit
knowledge of trade-offs particular to query evaluation with
WebSources to choose specific WSI that produce good plans.
The WQO may explore specific evaluation strategies such as
top-down versus bottom-up evaluation of mediator subgoals
corresponding to different WSI that are chosen. Top-down
evaluation is usually associated with an ordering of subgoals
as is common in WebSources. The WQO choice of WSI
depends on the space of WSI corresponding to some subgoal,
and the cost of WebSource queries. The cost depends on
various statistics and measured execution times that may
be provided to the WQO by a WebWrapper. The space
of WSIs for some subgoal includes “atomic” or “composed”
solutions which are particular to WebSources, and which
also impact the cost of the plan. Typically, a “composed”
solution increases the number of wrapper calls. After the
WHSI are chosen, the WQO would generate a good plan for
this choice of WSI.

Consider the ACM digital library (ACM DL) WebSource [24],

and mediator schemas, which are relational. We characterize
the limited query capability as an input-output relationship
IOR, Input — Output, on a relation, where Input are the
set of attributes that must be bound and Output are the set
of projected attributes. The mediator schema and IORs for
the ACM DL are as follows:
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Paper(1stAuthor, Title, PaperSrc, Paperld,
Keywords,Publisher)
ior;: {1stAuthor} —
{Title, Paperld, PaperSrc, Keywords}
iorz: {1stAuthor} —
{Title, Paperld, Keywords,Publisher}
iorg: {Paperld} — {PaperSrc}
CoAuthor (Paperl d, CoAuthor)
iorz: {Paperld} — {CoAuthor}

We consider the following mediator query Q1:

Select Title, PaperSrc, Coauthor

From Paper, CoAuthor

Where 1stAuthor="franklin” and
CoAuthor.Paperld=Paper.Paperld

Depending on the WQO choice of WSI for the query on
Paper, the relational optimizer can have different options for
plan generation. If the WQO chooses an atomic WSI, WSI,,
corresponding to iori, then the relational optimizer will only
be able to generate plan P1 of Figure 5, which has a single
dependent join. If the WQO choice is the composition of
WSI, and WSIs, corresponding to iors and iors, then, the
relational optimizer can produce two plans P2 and P3 of
Figure 5. Note that there are two external scan operators
on the mediator relation Paper in both these plans.

The time-to-first-tuple and time-to-last-tuple behavior
for a set of random executions of query Q1, for each of the
above plans, is in Figure 6a and b, respectively. This fig-
ure indicates that in a volatile environment of WebSources,
execution times vary significantly. However, there are con-
sistent trends that are observed over all executions. To prove
that these trends hold, we present quantile plots of time-to-
first-tuple and time-to-last-tuple for all executions of Figure
6 in Figure 7a and b.

As seen in Figure 7b, plans P1 and P3 are statistically
comparable using time-to-last-tuple. These two plans per-
form better than plan P2 in all cases, for time-to-last-tuple.
To explain informally, (many of) the selected papers had
multiple co-authors, and plan P2 performed a costly down-
load of the paper multiple times, once for each co-author.
Thus, in this case, the conservative WQO choice of an atomic
WHSI, e.g., in plan P1, may have been safer, since it avoids
the risk of choosing the costly plan P2. In contrast, plans
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P1 and P3 only downloaded each paper once, independent of
the number of co-authors. Figure 7a shows the time-to-first
for all the plans. We observe that in general, a composed
WSI, as in plans P2 or P3, typically has less initial delay, and
provides smoother delivery of data. This is important in a
Web environment when long delays are not uncommon. We
note that further testing and statistical analysis is needed to
completely validate our observations on the query optimizer
and to tune its performance.

4 Coping with Unreliable Sources

The preceding sections described approaches for produc-
ing efficient query execution plans when accessing wrapped
data sources. Such plans are generated using knowledge of
the typical behavior of the sources, and thus, will be good
plans for many situations. While such an approach on its
own would be sufficient for a stable environment such as a
tightly-coupled cluster or local area network, the wide-area
environment provides additional complications that must be
addressed in order to provide responsive data access. In par-
ticular, a major challenge that must be addressed for wide-
area distributed information systems is that of response-time
variability. Data access over wide-area networks involves a
large number of remote data sources, intermediate sites, and
communications links, all of which are vulnerable to conges-
tion and failures. Such problems can introduce significant
and unpredictable delays in the access of information from
remote sources.

Traditional distributed query processing technology per-
forms poorly in the wide-area environment because unex-
pected delays encountered during a query execution directly
increase the query response time. Query execution plans are

generated statically, based on a set of assumptions about the
costs of performing various operations and the costs of ob-
taining data. The execution of a statically optimized query
plan is likely to be sub-optimal in the presence of unexpected
response time problems that arise during the query run-
time. In the worst case, a query execution may be blocked
for an arbitrarily long time if needed data fail to arrive from
remote data sources across a wide-area network. The appar-
ent randomness of such delays in the wide-area environment
makes planning for them during query optimization nearly
impossible.

We have identified three types of delays that can arise
when requesting data from remote sources: 1) Initial delay
is a longer than expected lag between the time that a source
is initially contacted and the time that the first tuple from
that source arrives at the query site (i.e., mediator). Such
delays can arise, for example, from difficulty in establishing a
connection with the source, or because of some unexpected
start-up costs involved with running the subquery sent to
that source; 2) Slow delivery is said to occur when data ar-
rives at a regular rate that is much slower than expected.
Such problems can arise, for example, if an alternative com-
munication path is used; 3) Bursty arrival, where data arrive
at a fluctuating rate, is likely the most typical of the three
problems. Bursty arrival can occur due to congestion or er-
rors at any point in the path of data from the source to the
query site, including at the source itself.

We have developed two techniques to cope with these
three types of runtime problems. Query Scrambling is a re-
active query execution scheme that adapts the query plan
in response to delays that are detected at runtime. Query
Scrambling has been shown to be highly effective in cop-
ing with the initial delays. XJoin is a small footprint, fully
pipelinable join operator that automatically adjusts the flow
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of tuples during query execution in response to all three
types of delays. XJoin focuses on streaming answer tuples
incrementally to the users as quickly as possible, rather than
on optimizing the delivery of the last tuple. These two tech-
niques are discussed in the following sections.

It should be noted that the definitions of the above three
problems implicitly assume that the requested data even-
tually arrive at the query site. Of course, if needed data is
missing, the query cannot be correctly answered as originally
posed. There are several alternatives in such cases. First,
as we will discuss in Section 5, it may be possible to obtain
missing data from alternative sources. Second, it may be
necessary to change the query being answered in some way.
One such change is to focus on delivering at least part of the
answer as quickly as possible. This is the approach taken
by the XJoin operator described in Section 4.2. Another ap-
proach is to modify the query in some way so that the answer
can be provided with the data that has arrived. One exam-
ple of such an approach is called Parachute Queries [2, 7].
Such semantic approaches, however, are beyond the scope
of our current work.

4.1 Query Scrambling

We have developed Query Scrambling [4, 3, 37] to address
the issue of unpredictable delays in the wide-area environ-
ment. Query Scrambling reacts to unexpected delays by
modifying, on-the-fly, the execution plan of a query so that
progress can be made on other parts of the plan. In other
words, rather than simply stalling for delayed data to ar-
rive, as would happen in a typical, static scheduling scheme,
query scrambling attempts to hide unexpected delays by
performing other useful work.

Query Scrambling reacts to delays in receiving data from
remote data sources in two ways (referred to as Phase I and
Phase II respectively in [4]):

o Scrambling Rescheduling - the execution plan of a query
can be dynamically rescheduled when a delay is de-
tected. In this case, the basic shape of the original
query plan generated by the optimizer remains un-
changed.

e Operator Synthesis - new operators (e.g., a join be-
tween two relations that were not directly joined in
the original plan) can be created when there are no
other operators that can execute. In this case, the
shape of the query plan can be significantly modified
through the addition, removal and/or re-arrangement
of query operators.

Scrambling rescheduling works by dynamically creating
additional parallelism, beyond what may have already been
compiled into a query execution plan. Through this par-
allelism, scrambling is able to perform useful work, such
as obtaining other data from remote sources or perform-
ing query operations, while delays are experienced on other
parts of the query plan. In order to implement rescheduling,
the run-time system must sometimes introduce materializa-
tions of intermediate results and base data into the query
execution plan. For this and other reasons, scrambling may
increase the total cost of query execution in terms of network
contention, memory usage, and/or disk I/O. The potential
costs caused by rescheduling raise some basic performance
trade-offs between extensive use of local resources (at the
mediator site) versus stalling on delayed data with no extra
expense than the costs of delays.

153

Operator Synthesis is a somewhat more drastic response
to delays that is invoked only after the options for produc-
tive rescheduling of existing operators have been exhausted.
In contrast to rescheduling, Operator Synthesis creates new
operators that were not present in the original query plan
(e.g., a join between two data sources that were not directly
joined in the original plan). Because the operations that
are created in this manner were not chosen by the optimizer
when the original query plan was generated, it is possible
that these operations may entail a significant amount of ad-
ditional work. If the newly created operators are too expen-
sive, query scrambling could potentially result in a signifi-
cant degradation in performance.

As described in the original paper [4], both of these
phases where heuristic-driven. That is, the algorithm was
specified as a set of heuristic rules that were activated as de-
lays in obtaining remote data were detected. The heuristics
described in that paper were shown to be very effective at
hiding initial delays in some situations, but they were also
shown to be prone to making poor scrambling decisions in
other cases. In some cases, the proposed heuristics could re-
sult in performance that is worse than simply waiting for the
delayed data to arrive. Thus, it became clear that it would
be useful to exploit query optimization to aid in making
intelligent scrambling choices.

In [37] we presented three different approaches for ex-
tending a query optimizer for scrambling. Two of the ap-
proaches use an objective function based on response time,
while the other approach used a more traditional optimizer
based on total work. A key insight behind this work is that
a response time-based optimizer, if given an estimate of the
expected delay duration, can automatically schedule the ac-
cesses to delayed data at the proper place in the plan exe-
cution. Unfortunately, the current state of delay estimation
for wide-area data access is quite poor (e.g., note the loading
time estimates that appear at the bottom of your browser),
so we developed and studied alternative ways to provide de-
lay estimates and to deal with inaccurate ones.

A performance study using queries from the TPC-D bench-
mark (reported in [37]), showed that optimizer-based scram-
bling can effectively hide initial delays and outlined the fun-
damental tradeoffs between risk aversion and effectiveness
that arise in the absence of good predictions of expected
delay durations. Our current work on query scrambling is
focused on the integration of the approach into an exist-
ing database system. We have extended the PREDATOR
Object-Relational database system [32] by converting its ex-
ecution model to run in a thread-per-operator mode rather
than as a thread-per-query, and have integrated our scram-
bling optimizer into the system.

4.2 Xloin - A Fully Pipelinable Join Operator

While query scrambling has been shown to be effective at
hiding initial delays, it is less effective at dealing with the
other two types of delays: slow delivery and bursty arrival.
To cope with these additional problems, we have developed
a complementary approach, based on a non-blocking join op-
erator we call XJoin. XJoin extends the symmetric hash join
(SHJ) [40] to use secondary storage, which allows it to be
used with large inputs and to run concurrently with other
query operators in a bushy query plan. Simply extending
SHJ to use secondary storage, however, is insufficient for
tolerating significant delays in receiving data from remote
sources. For this reason, a key component of XJoin is a
reactively scheduled background process, which opportunis-



tically utilizes delays to produce more tuples earlier. In a
recent paper [36], we have shown that by using XJoins it
is possible to produce query execution plans that can bet-
ter cope with data delivery problems and that can deliver
initial results orders of magnitude faster than traditional
techniques, with in many cases, little or no degradation in
the time required to deliver the entire result.

The XJoin approach is based on two fundamental prin-
ciples:

1. It is optimized for producing results incrementally as
they become available. When used in a fully pipelined
query plan, answer tuples can be returned to the user
as soon as they are produced. The early delivery of
initial answers can provide tremendous improvements
in the responsiveness of the system. Furthermore, in
many situations, users require only a small subset of
the total query answer, so returning initial results quickly
is the key to system usability.

2. It allows progress to be made even when one or more
sources experience delays. There are two reasons for
this. First, by using less memory XJoin allows for
bushier query plans than are possible with other pipelined
join methods. Thus, some parts of a query plan can
continue while others are stalled waiting for input.
This enables the query plan to make progress on other
parts of a query plan even if some relations are tem-
porarily unavailable. Second, by employing background
processing on previously received tuples from both of
its inputs, an XJoin operator can produce results even
at times when both inputs are stalled simultaneously.

The symmetric hash join, on which XJoin is based, was
aimed at addressing similar issues. As originally proposed,
however, symmetric hash join requires that hash tables for
both of its inputs be kept in main memory until all of the
tuples have been received from both of its inputs. As a re-
sult, symmetric hash join cannot be used for joins with large
inputs, and the ability to run multiple joins (e.g., in a bushy
query plan) is severely limited. XJoin avoids these prob-
lems by allowing tuples from one or both of the inputs to be
temporarily spooled to secondary storage. In a sense, XJoin
provides for symmetric hash join, the same flexibility that
the hybrid hash join provides for the classic hash join [33].
Not surprisingly, similarly to hybrid hash join it is based on
partitioning.

XJoin splits both of its inputs into a number of parti-
tions based on a hash function.! Each partition is com-
posed of a memory-resident portion and a disk-resident por-
tion. The memory-portion contains the tail (i.e., recently
arrived tuples) of the partition, and the disk-resident por-
tion contains the rest. The memory-resident portions are
maintained as hash tables as in symmetric hash join. Each
memory-resident portion (for both sources) has at least one
block of memory reserved for it at all times. The remaining
memory (if any) is divided evenly between the two sources
and is used to allow the memory-resident portions to grow
as tuples arrive from the sources.

When XJoin receives a tuple from one of its sources,
it inserts the tuple into its corresponding partition, which
is found by applying a hash function to its join attribute
(Figure 8). When the memory becomes full, the tuples of
the partition with the largest memory-resident portion are

1The number of partitions is determined by using the formula
F x ||R|| where F is the “fudge” factor, and ||R|| is the number
of pages in the smaller input [33].
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Fig. 8: Tuple Partitioning in XJoin

written to the disk. This grows the size of the disk-resident
portion (e.g., partition k of source B in Figure 8). The
memory-resident portion of that partition is then reduced
to a single (initially, empty) block, and the remaining free
blocks are made available for use by any of the partitions as
new tuples arrive. The flushing process is repeated whenever
the memory becomes full.

XJoin proceeds in three stages, each of which is per-
formed by a separate thread. The first stage joins tuples
in the memory resident portions of the partitions, acting
similarly to the standard symmetric hash join. The second
stage joins tuples from disk with tuples that have not yet
been flushed to disk. The third stage is a clean-up stage,
which performs any necessary matching to catch any results
missed by the first two stages. The first and second stages
run in an interleaved fashion — the second stage takes over
when the first becomes blocked due to a lack of input. These
stages are terminated after all input has been received, at
which point the third stage is initiated.

The second stage is the key to XJoin’s ability to cope
with unexpected delays. Like the original symmetric join
algorithm, the first stage of XJoin can tolerate the blocking
of one of its two inputs, but if both inputs block, the first
stage itself blocks. In such a case, the second stage will
be resumed, and data that has previously been spilled to
the disk for one input will be used to join with data that
has arrived more recently from the other input. Thus, like
query scrambling, the second stage of XJoin attempts to
hide delays by performing other useful work.

The implementation details of XJoin, which are beyond
the scope of this paper, are presented in [36]. There are some
important issues that deserve mention, however. First, due
to the interactions among the various stages of XJoin, if
care is not taken, spurious duplicate result tuples can be
produced. In order to prevent duplicates XJoin employs a
fast, on-the-fly duplicate detection mechanism. The dupli-
cate prevention mechanisms rely on timestamp values that
are maintained by the XJoin operator itself. Secondly, the
scheduling of the second stage must be done in a controlled
manner, as the second stage can consume additional re-
sources that can slow down normal processing if data arrival
resumes. A simple scheme for controlling the execution of
the second stage is presented in [36]. Finally, the overall
performance of the operator can be improved by dedicating



a small amount of additional memory for use as a “cache”
during the second stage. When tuples are read from disk
during the second stage, they can be read into this cache.
The cache can then be probed using the disk resident tuples
of the corresponding partition of the other input.

We have implemented XJoin in the PREDATOR Object-
Relational DBMS, and compared its performance with that
of hybrid hash join using real network traces. We performed
a detailed experimental study, which investigated the per-
formance of XJoin in the presence of different data delivery
rates, memory sizes, and query complexity [36]. In all the
cases studied, XJoin had much better (often by several or-
ders of magnitude) interactive performance (i.e., in terms of
producing the initial portions of the result) than hybrid hash
join, and in most cases it performed better than hybrid hash
join for the entire query, delivering even the final result tuple
as fast or faster. These results indicate that XJoin is indeed
an effective solution for providing fast query responses to
users in the presence of slow and bursty remote sources.

5 Processing with Alternate Sources

Query Scrambling and XJoin provided solutions to deal with
a variety of delays. Recall that query planning in the Web
query optimizer choose the “best” WebSource to submit a
query. If there are multiple alternative sources, then another
option to hide network delays during the query processing
is to choose among multiple alternative data sources. Infor-
mally, two sources are considered alternatives of each other
if they provide similar data. In other words two sources
are alternatives if the missing tuples from one source can
be obtained from another one. The tuples may be missing
either because they are delayed, or because one of the source
does not have complete data. Notice that in the first case
where the tuples are missing due to the delays, using an al-
ternative source may improve the query response, whereas
in the second case using an alternative source improves the
answer quality. Depending on their contents and schemas
three kinds of alternative sources are possible:

e Replicas: in this case the alternative relations have
the same content. The unavailability of one relation
may be hidden by the tuples from the other which
may improve the query response.

e Complements: a relation may have missing tuples
which can be supplied from an alternative source. It
may be the case that none of the relations are com-
plete, but collectively they cover all the domain.

e Column-partial alternatives: Alternatives may have
similar tuples, however some columns may be missing
from one source which is supplied by an alternative.

In this paper we focus on utilizing replicas in the presence
of unpredictable delays in order to improve the response
time. Replication can be used to increase availability and to
allow clients to recover from delays by contacting available
replicas. When a remote source (relation) is unavailable or
slow, other replicas can be fetched instead to improve the
response time. We consider fetching strategies for a system
in which relations are replicated across a wide area network
at different servers which are accessed by many clients.

We make the following assumptions about an execution
scenario:

e A large client population may exist and compete for
services and network bandwidth.

e Physical layout of the replicated tables and their im-
plementation is unknown to the clients. A replica may
be a base relation or a complex view at the remote
site.

e The sources are assumed to be delayed if the arrival
rate of its tuples is below a (perhaps user defined)
threshold or when a significant delay occurs.

Processing replicas requires two separate mechanism. First

a Fetching Policy is needed to drive the fetching of replicas.
The fetching policy has to decide which replicas to fetch, in
which order, and what to do when delays occur. Second,
a Merging Algorithm is needed. Since we are dealing with
replicas the main goal of the merging algorithm is duplicate
elimination. Duplicates may arise if multiple replicas are
fetched. In this subsection we will focus on fetching policies
in the presence of delays. We also developed a pipelined du-
plicate elimination algorithm which is used to merge repli-
cas, which is not considered in this paper.

5.1 Fetching policies for replicas

Consider a simple consumer/producer interpretation of the
fetching process. The tuples produced by a source are re-
ceived at the destination with a particular arrival rate AR
(tuples/sec). There is also a processing rate PR characteriz-
ing the speed of processing of the tuples, in a corresponding
query plan, or a consumer, at the destination. The problem
of finding a fetching policy can be formulated in the fol-
lowing way: Given a consumer C with a processing rate PR
and a set of alternate sources with corresponding (estimated)
arrival rates, find a subset of the alternative sources which
should be fetched by C simultaneously. Possible approaches
to the solution of this problem are as follows:

1. Aggressive fetching: Fetch all the available replicas.
Tuples are unioned (possibly using a pipelined dupli-
cate elimination algorithm) as they arrive and output
is produced at least as fast as the fastest source. In
general we have the following obstacles which render
an aggressive fetching policy inefficient:

e Large client population (scalability issue): many
clients opening all the sources at once will increase
the average load on the servers. This will increase
the response time perceived by all the clients.

o Network bottlenecks: Even with one client, fetch-
ing multiple sources at the same time could cre-
ate congestion in the network. For instance the
client’s network connection may become the bot-
tleneck if its bandwidth is lower than that of the
servers.

e Client processing: even with one client and infi-
nite network bandwidth the client processing (mainly
in the form of duplicate elimination due to dupli-
cate data arriving from sources) may become a
bottleneck.

o Diminishing returns: depending on whether sources
send their tuples in the same order or not, fetch-
ing from multiple sources does not improve the
arrival behavior perceived by the client too much.
This is especially true if we focus on the last tuple
response time.

2. Moderate fetching: Find a subset of the replicas, while
minimizing the fetching cost. An optimal strategy in



fetching replicas should result from a cost-based opti-
mization on the consumer side. The strategy should
also respect the scalability issue. This approach re-
quires further research to prove its feasibility, since
the factors which influence the fetching cost are highly
unpredictable.

3. Counservative fetching: Find a replica with a good (best)
AR and utilize it while it provides a reasonable AR;
replace it when the AR becomes low, or in extreme
case is delayed. In the next subsection, we will further
investigate this conservative policy.

5.2 Conservative fetching and cost-based replace-
ment for replicas

A conservative fetching algorithm would behave as follows:

1) Compute an initial ordering of replicas.

2) Select the best available replica and prepare the query.

3) Open the replica and start reading all the tuples until
EOF or there is significant delay.

4) If there is significant delay, repeat from step 2.

There are several questions that must be answered to ob-
tain a usable algorithm with desirable properties. Decisions
must be made on ordering replicas (step 1), detecting the
timeout (step 3), etc. We discuss these issues next.

5.2.1 Computing the ordering of the replicas

The ordering of the replicas may be defined in the following
manners:

e Random ordering.

e Ordering based on statistics. We assume some arrival
rate statistics (for example, a maximum arrival rate
AR o for each source) is maintained. The sources
are ordered in decreasing order of AR.

e Ordering based on initial probing. Probing queries are
submitted to all remote sites to sample their arrival
rates AR;,;:. The sources are ordered with respect to
this ARznzt

If there are multiple clients, then contacting the replicas
in the same order will tax some sources. For instance if
the servers are picked in the decreasing order of ARmaz,
then the powerful sources are taxed too much, since all the
client request will be made to the same server significantly
increasing its load. This is especially important if there is
some initial server overhead associated with processing client
request. Even if there is no initial startup overhead, the
data transfer rate from the first source may decrease with
increasing number of clients. An added disadvantage is that
other servers will be underutilized. Thus, there should be a
way to balance the access to these sources.

5.2.2 Replica replacement strategy

The decision criteria to replace the current source with a new
one is as follows: if the arrival rate of the current source falls
below a threshold value, then select the “next” replica and
proceed to step 3. Determine if the current, or new replica
produce the next tuple, and drop the looser. The replace-
ment cost can be estimated on the basis of such parameters

as replacement overheads, cardinality of tuples to be deliv-

ered from the current source, and that can be expected from

the next replica, AR of the current and new source, etc.
Another important issue is how to handle partial results:

¢ Re-fetch approach: Discard tuples from current replica,
and re-fetch all of them from the new source. The ad-
vantage of this approach is its simplicity. The disad-
vantage is that the redundancy can depreciate possible
speed-up.

e Remainder query approach: use tuples from cur-
rent replica to generate a remainder query, and fetch
only new tuples from the new replica. The problem
then is how to generate the remainder query. Gener-
ating a reminder query may be easy when both repli-
cas are ordered, assuming the replica allows the client
to identify particular tuples to be downloaded. An-
other solution is to generate a selection predicate using
knowledge of tuples obtained from the current replica.
For example, one may generate a disjunction of equal-
ities (Attr=Value). However, the size of the selection
predicate may be huge. The replica should be able to
process selection conditions with negation.

We illustrate the replica replacement condition in Figure
9, which plots time to obtain tuples versus cardinality of the
resulting relation. Initially, a replica with arrival rate AR1
was selected. Suppose the arrival rate for this source has
decreased to AR1’, which triggered the replacement condi-
tion check in Step 3. Suppose the number of tuples that
have been received is equal to Ccurr. Assuming Cfin is
a cardinality of the entire result, the estimated time to ob-
tain all tuples from the current replica is T1. Suppose T2
is the time to obtain all tuples from the next replica with
arrival rate AR2. Then, the next replica should be chosen
ifT2<T1.

Time
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Fig. 9: Source replacement condition

6 Locating and Selecting Data Sources based on
Content and Quality Descriptions

We are witnessing an increasing interest in using the WWW

as a platform for publishing structured and semi-structured



data, such as scientific datasets in various disciplines. For
example, large collections of data about the environment
are publicly available in online repositories [19]. In order to
facilitate data and metadata exchange, standard languages
and interchange formats such as XML, XML-Data, RDF,
have been proposed. While providing access to sources on
the WWW has been simplified, there still remains the prob-
lem of finding a set of sources that are relevant to a query,
and then ranking among these sources. In this subsection
we show how source quality and content metadata can be
shared on the WWW, and how this can be used to publish
sources, and to select and rank sources.

6.1 Publishing Sources in XML

We describe an XML-based encoding format for source de-
scription metadata. Consider a scientist who measures air
quality parameters in Canada. She measures the concen-
tration of greenhouse gases in the atmosphere and stores
the results of her daily measurements in a DB2 database.
In order to make this data source available, she publishes
the necessary connection information and source descrip-
tion metadata about the source’s contents in an WS-XML
document in Figure 10.

<?xml version="1.0"7>
<title>Environmental Data for Canada</title>
<ws>
<wssci>
<wrapper type="JDBC"/>
<source name="EnvCanada"
type="0Oracle"

location="jdbc:oracle://db.env.ca/federal"/>

</wssci>
<metadata>
<schema>http://www.env.org/EnvSchema.xml</schema>
<type name="AirQuality"
completeness="0.90"
last_update="Mon Feb 1 09:26:11 EST 1999"
update_frequency="5:00:00"
granularity="1:00:00">
<attribute name="#city" atttype="ENUMERATION"
values="Toronto Waterloo Ottawa"/>
</type>

</metadata>
<desc> This repository contains daily measurements
of air quality parameters in Ontario for the
year 1998 and 1999. </desc>
<fus>

Fig. 10: Source Content and Quality Metadata in XML

This document specifies the name, type, and location of

the database (in the corresponding attributes of the <source>

tag), the type of wrapper needed (<wrapper> tag), and a
textual description of the source’s contents (<desc> tag).
The document also states that the types in the data source
conform to a schema specified in a separate XML docu-
ment, which is shared by a community of environmental
scientists. The shared schema is specified in a document,
”EnvSchema.xml” in this case, that uses the XML-Data [21]
conventions for describing strongly typed relational schemas.
The <type> tag tag is used to publish the source descrip-
tion metadata for each individual type. It corresponds to

the values for the quality of data parameters that will be
discussed next. The <attribute> tag can be used to spec-
ify the domain covered by the source. In this example the
<attribute> tag provides the domain of the cities for which
air quality information is provided by this source.

6.2 Quality of Data (QoD) Dimensions

We define four commonly encountered Quality of Data (QoD)
dimensions: completeness, recency, frequency of updates
and granularity. We note that additional QoD dimensions
can be defined for each domain and schema.

e Completeness: Suppose there is some ideal, possibly
virtual, complete source, that contains all the relevant
data. Now, any particular source generally contains
a fraction of the data (tuples) in the complete source.
An estimate of the fraction of the data of the complete
source that is in the particular data source represents
its completeness. The completeness measure is use-
ful in query evaluation to select sources that are most
likely to contain relevant information. Completeness
may be estimated using query feedback, for example,
based on the queries that were successfully answered
at this source, or may be provided by an administrator
or expert user.

e Recency: Another important aspect of data quality is
the recency of the data. One can imagine an environ-
ment where several data sources provide similar infor-
mation, but some sources have older data than others.
In many application domains data quality tends to de-
preciate in time so it makes sense whenever we have a
choice to try to use the most recent data.

e Frequency of updates: A large class of sources are
updated at fixed length intervals (eg. weekly or daily).
If the frequency of updates is available it is reasonable
to take it into consideration as an indication of the
quality of a data source. Also, it can be used to esti-
mate the recency, if the last update time is unknown.

e Granularity: An important class of data available
online consists of so-called “time-series” data consist-
ing of periodic samplings of some time-varying param-
eter. Examples include meteorological information,
stock closing prices, currency exchange rates, etc. A
common characteristic of these data types is the pres-
ence of a time attribute in the type definition and a
functional dependency of all the other attributes on
this one. For this class of data, one can distinguish
among sources based on the sampling granularity (eg.
hourly, daily, weekly).

6.3 Model for Source Content and Quality Descrip-
tions
We consider the following model:

o T, Ty, ..., T,, are relational types, each type T; has
attributes Aj1, Aio, -, Aip;. Every attribute A;; is
associated with a domain D;;.

e A source S contains data for a subset of T, T3, ..., T

e A source S may have several source content quality
descriptions (scqd’s) describing its contents.



An scqd is a tuple (t,ed,c,r,f,g), where t is a type and
cd is a content description that specifies domains for some
of the attributes of {. The parameters ¢,r,f,g correspond to
the following Quality of Data (QoD) parameters: complete-
ness, recency, frequency of updates and granularity, respec-
tively. The QoD parameters qualify the data in the source
described by the cd. They are as follows: ¢ estimates the
fraction of the data in the complete type ® available in the
source; 7 states how old is the data; f represents the length
of the intervals when the data is updated; and g represents
sampling granularity of the data.

Example 6.1 Example scqgd’s may be as follows:

Temperature(time,city,value)

S1  scgdii: (Temperature, [(city,{ Toronto}),

(time, YearSince1990)], 1.0, 3 days,-, 1 hour)
scqds1: (Temperature, [(city,{Kingston}),

(time, CurrentYear)], 0.8, 2 days,_, 12 hours)
scqdsy: (Temperature, [(city, CityInCanada),

(time, YearSince1950)], 0.5, 1 day,_, 24 hours)
Rainfall(time,city,value)

Sz  scgdzz: (Rainfall, [(city,{Kingston}),

(time,CurrentYear)], 1, 2days,_, 12 hours)]
scqdsz: (Rainfall, [(city, CityInCanada),

(time, YearSince1950)], 0.5, 1 day,_, 24 hours)

S>
Ss

Ss

6.4 Queries for Selecting and Ranking Sources

We propose a query language that exploits QoD parameters
to select among a collection of data sources and rank them.
The language can express queries with both strict and fuzzy
conditions on the QoD dimensions associated with specific
content descriptions. Fuzzy conditions are proximity pred-
icates allowing one to imprecisely specify a desired target
value for a certain QoD parameter. The evaluation of a
query returns a list of sources that support the specified
content description and satisfy the strict QoD conditions.
The sources are ranked according to the degree to which
they satisfy the fuzzy conditions. We illustrate the features
of this language by the following query:

Query 6.1 Find the best 5 sources that maintain informa-
tion for the temperature in Toronto for the current year.
Relevant sources must maintain 60% of all the data and the
intervals of samples must be close to 1 hour.

select best 5 s
from  Source s,
Scqd ¢ In s
where gq.type = “Temperature”

And g.cd = [(city,{Toronto}),(year,{1999})]
And g.completeness > 0.6
And g.granularity Closeto “1 hour”;

The above query selects sources that contain an scqd
matching the specified cd, whose completeness is better than
the cutoff value and returns an ordered list the five sources
whose granularity comes closest to 1 hour.

The query language also supports weighted combinations
of fuzzy conditions. For example, suppose we are interested
in sources that contain data approximately one week old and

2The complete type is a possibly virtual relation that contains all
the relevant data for the type.
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granularity close to 1 hour, and we care twice as much about
the granularity being close to the target value as we care
about the recency. Then, we can express this by including
explicit weights for each fuzzy condition:

select best 5 s
from  Source s,
Scqd g In s
where gq.type = “Temperature”

And (2/3)*(g.granularity Closeto “1 hour”)
And (1/3)*(g.recency Closeto “1 week”);

The combined score is computed from the individual
scores according to the following formula introduced by Fa-
gin in the context of multimedia databases [15].

Details of the query language and computational issues
in source selection and ranking are in [27, 28]. One impor-
tant issue requiring additional research is scaling the task
of indexing scqd’s over the WWW, and building searchable
indexes a la search engines for text. The other task is main-
taining these indexes to be current, as sources appear and
disappear, and their content and quality metadata changes
over time.

7 Conclusions

In this paper, we presented our wrapper mediator architec-
ture for WebSources. We addressed two issues in scaling
these architectures for wide area query processing. We re-
port on our results on developing a Web query optimizer
(WQO) that uses WebPT - a tool for predicting response
times. We also report on results for coping with unexpected
delays. This includes Query Scrambling — a reactive query
execution scheme that adapts the query plan in response to
runtime delays, and XJoin — a small footprint, fully pipelin-
able join operator that automatically adjusts the flow of
tuples during query execution.

We also introduce two additional issues that must be
addressed when scaling to large numbers of sources. The
first task is query processing with alternate sources. The
second task is using the WWW and XML to publish and
locate sources and their content and quality metadata.
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